Top-down

Object recognition, given real images

- clutter, occlusion, noise
- role of cortical architecture
- Learning object categories
 - Amazing ability to learn from a small number of examples

Top-down

Object recognition, given real images

- clutter, occlusion, noise
- role of cortical architecture
- Learning object categories
 - Amazing ability to learn from a small number of examples

Object recognition in real images

Background clutter and occlusion

Object recognition in real images

Background clutter and occlusion

Object recognition in real images

Background clutter and occlusion

Object recognition given occlusion, clutter

Linking local information (features) likely to belong to the same object or pattern

• local ambiguity, noise

• need for generic priors, e.g. smoothness

Resolving competing explanations

• occlusion, clutter

• need for domain-specific priors

Object recognition given occlusion, clutter

Linking local information (features) likely to belong to the same object or pattern

- local ambiguity, noise
- need for generic priors, e.g. smoothness

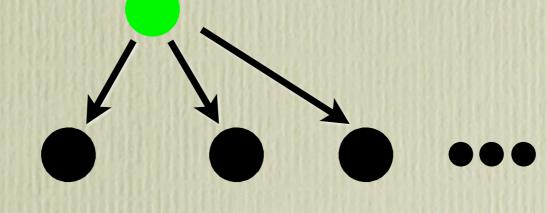
Resolving competing explanations

• occlusion, clutter

• need for domain-specific priors

Simple influence graphs Cue integration

Long line

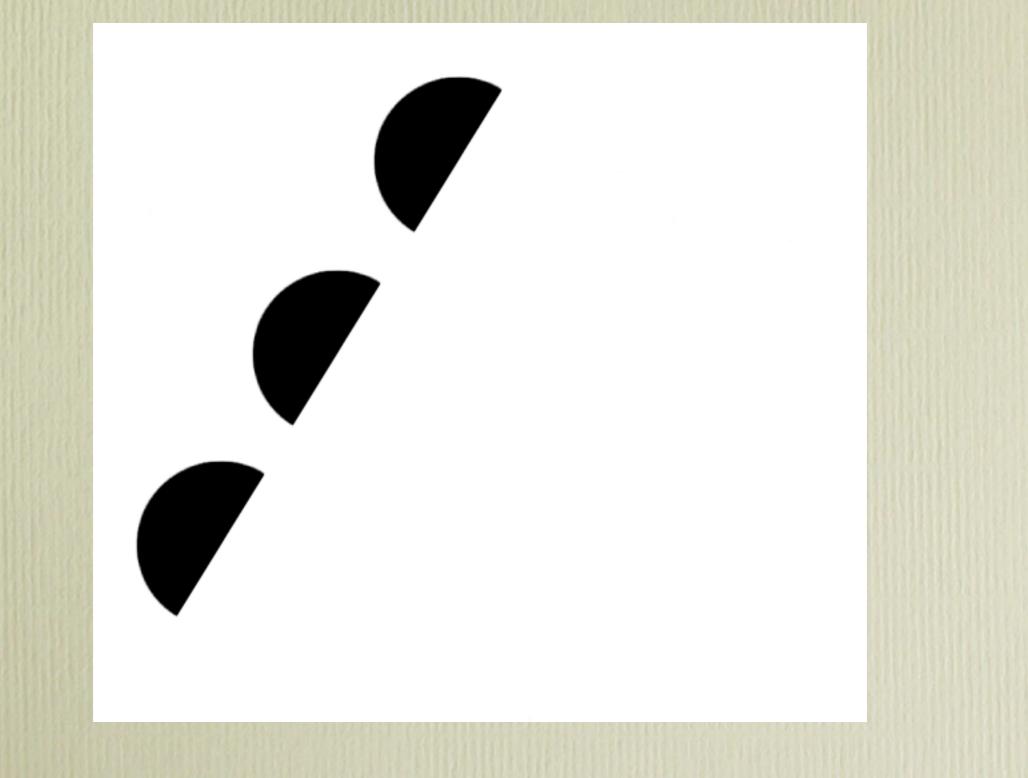


short segments

Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis & Machine Intelligence 11:823-839.

Yuille AL, Fang F, Schrater P, Kersten D (2004) Human and Ideal Observers for Detecting Image Curves. In: Advances in Neural Information Processing Systems 16 (Thrun S, Saul L, Schoelkopf B, eds). Cambridge, MA: MIT Press.

Cortical basis?

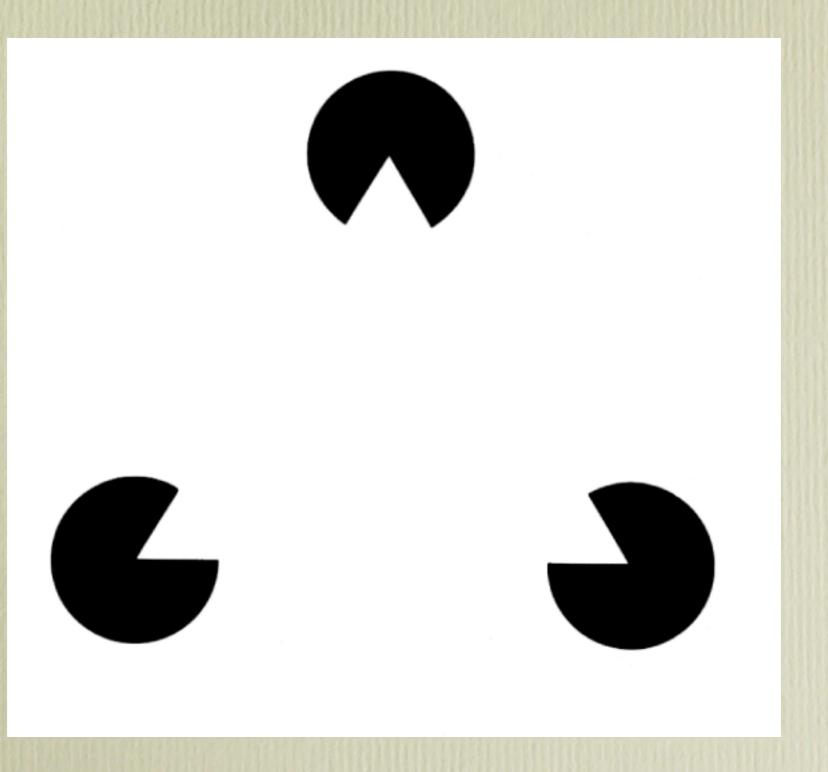


Short segments to long lines? Within-area linkage?

I to 2 mm

Das A, Gilbert CD (1999) Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399:655-661.

But what about whole shapes?



Object recognition given occlusion, clutter

Linking local information (features) likely to belong to the same object or pattern

• local ambiguity, noise

• need for generic priors, e.g. smoothness

Resolving competing explanations

• occlusion, clutter

• need for domain-specific priors

Object recognition given occlusion, clutter

Linking local information (features) likely to belong to the same object or pattern

• local ambiguity, noise

• need for generic priors, e.g. smoothness

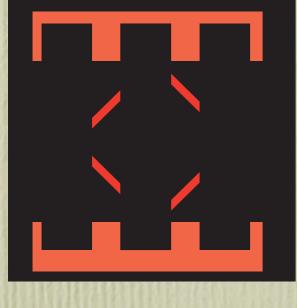
Resolving competing explanations

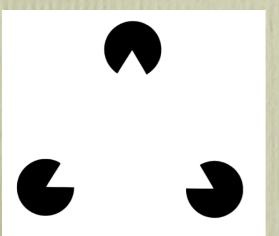
• occlusion, clutter

• need for domain-specific priors

Competing explanations: Explaining away missing data or

or not



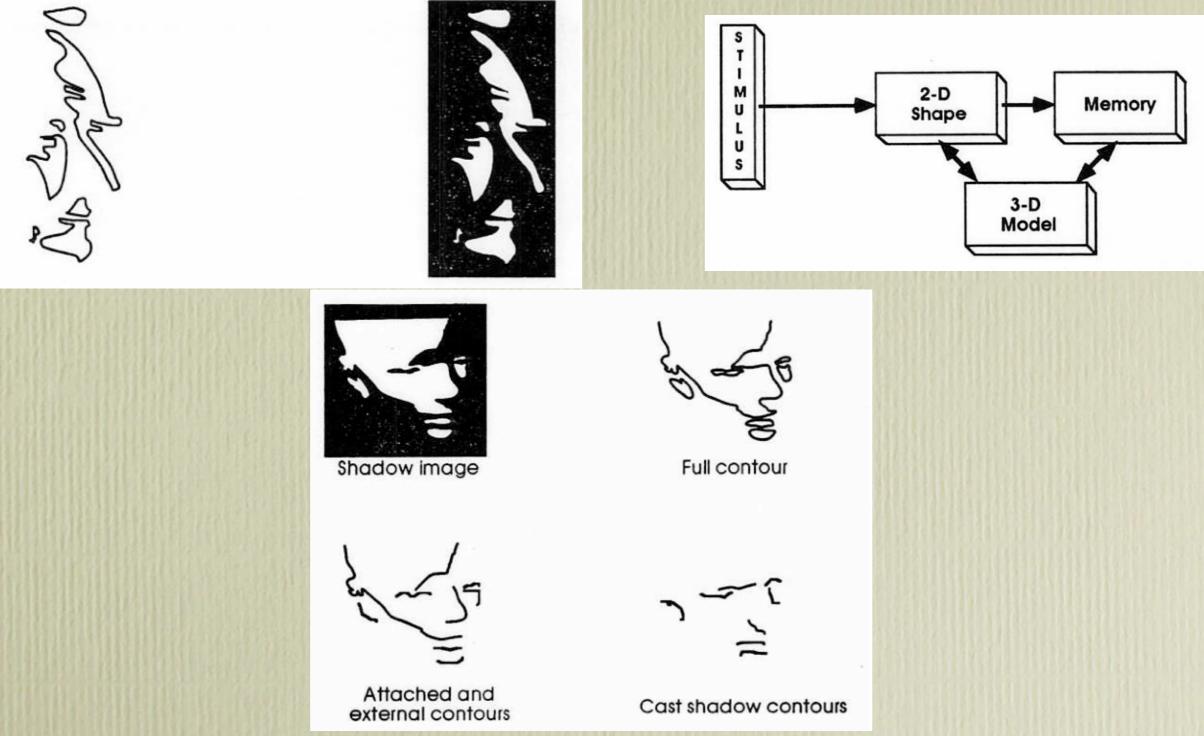


Auxiliary evidence for occlusion

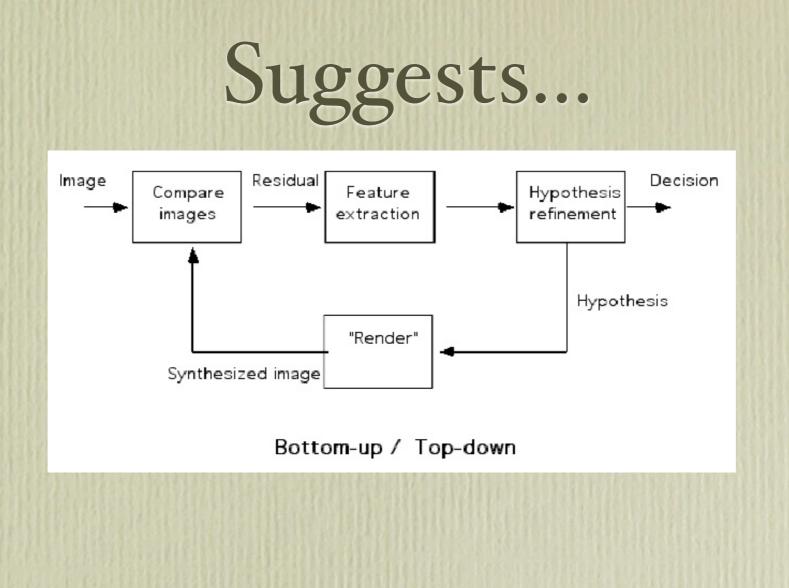
Auxiliary evidence for occlusion

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

Recognition despite cast shadows



Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.



Rather than this



Computer vision Image parsing: analysis by synthesis

(Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005))

text

 (ζ, L, Θ)

face

 (ζ, L, Θ)

background

 (ζ, L, Θ)

- Find most probable scene description
- Bottom-up "proposals" (cues) to access low- (shading) and high-level (faces, letters) models
- Verification through topdown synthesis
- If bottom-up proposals are good, synthesis is not needed to find most probable scene
- Flexible graph

Input

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Image Parsing: Unifying Segmentation, Detection and Recognition. IJCV, 63(2).

Bottom-up result

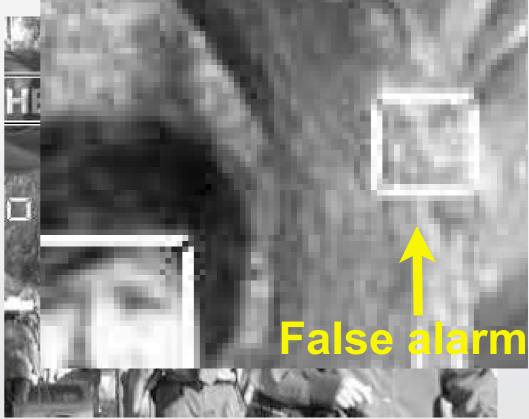
Image parsing & "Explaining away"

Input

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Image Parsing: Unifying Segmentation, Detection and Recognition. IJCV, 63(2).

Input

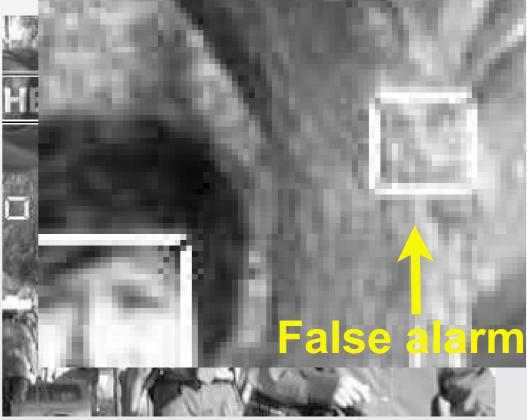
Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Image Parsing: Unifying Segmentation, Detection and Recognition. IJCV, 63(2).



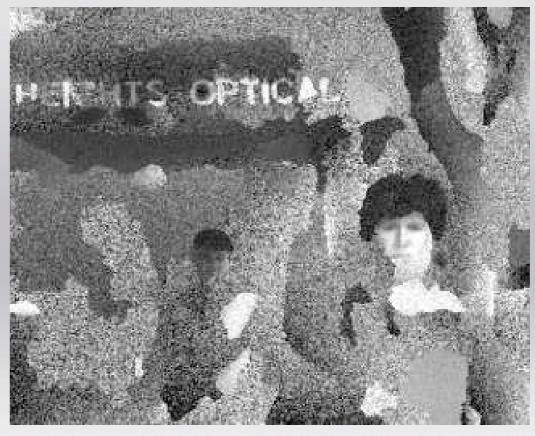
Bottom-up result

Input

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Image Parsing: Unifying Segmentation, Detection and Recognition. IJCV, 63(2).



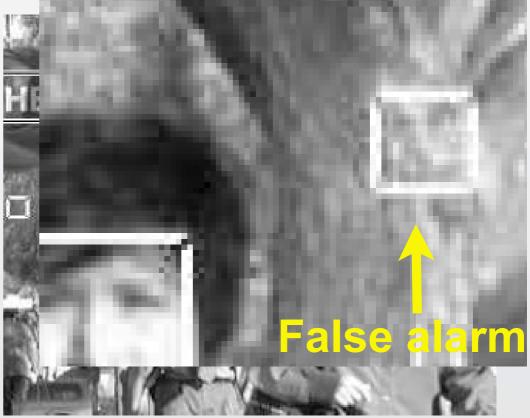
Bottom-up result



Synthesized image

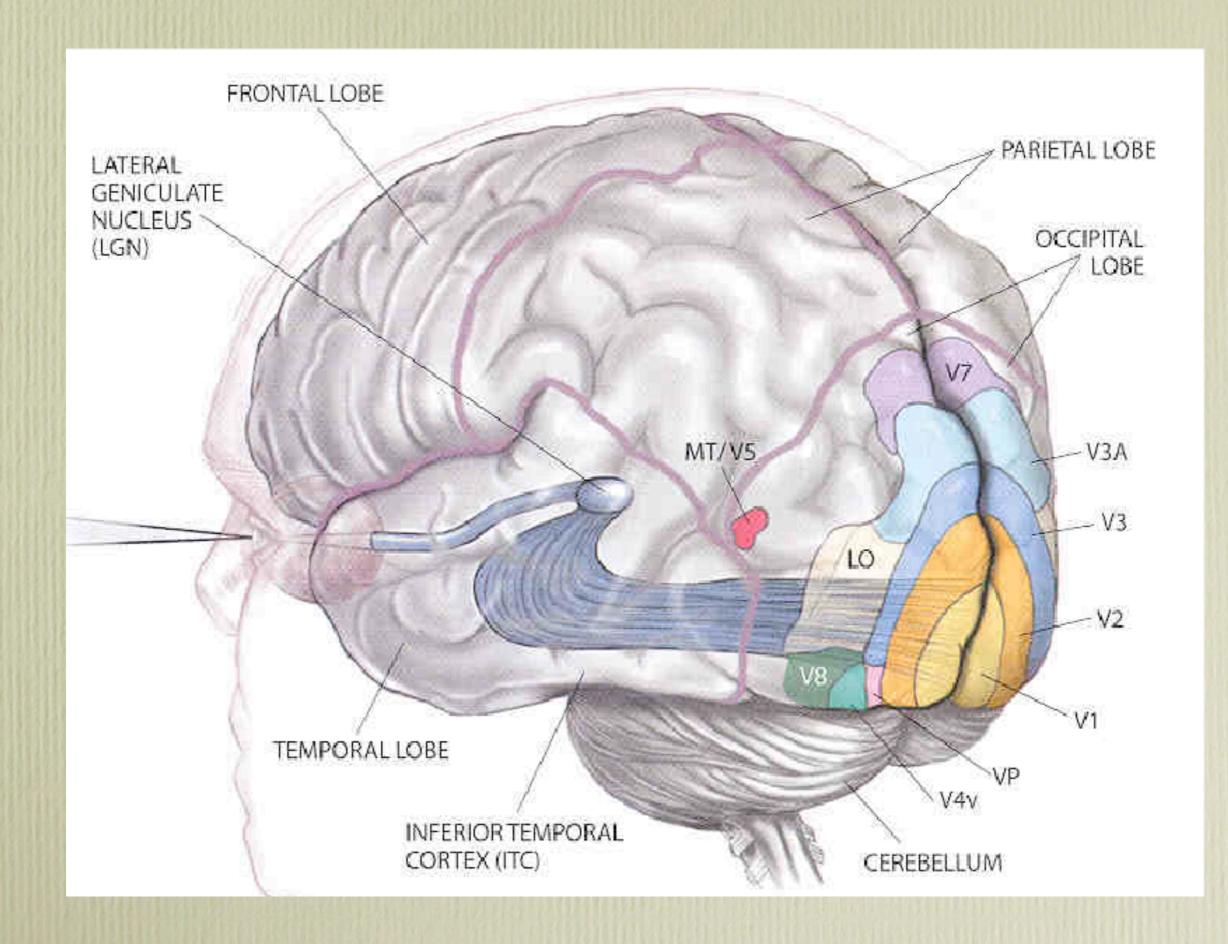
Input

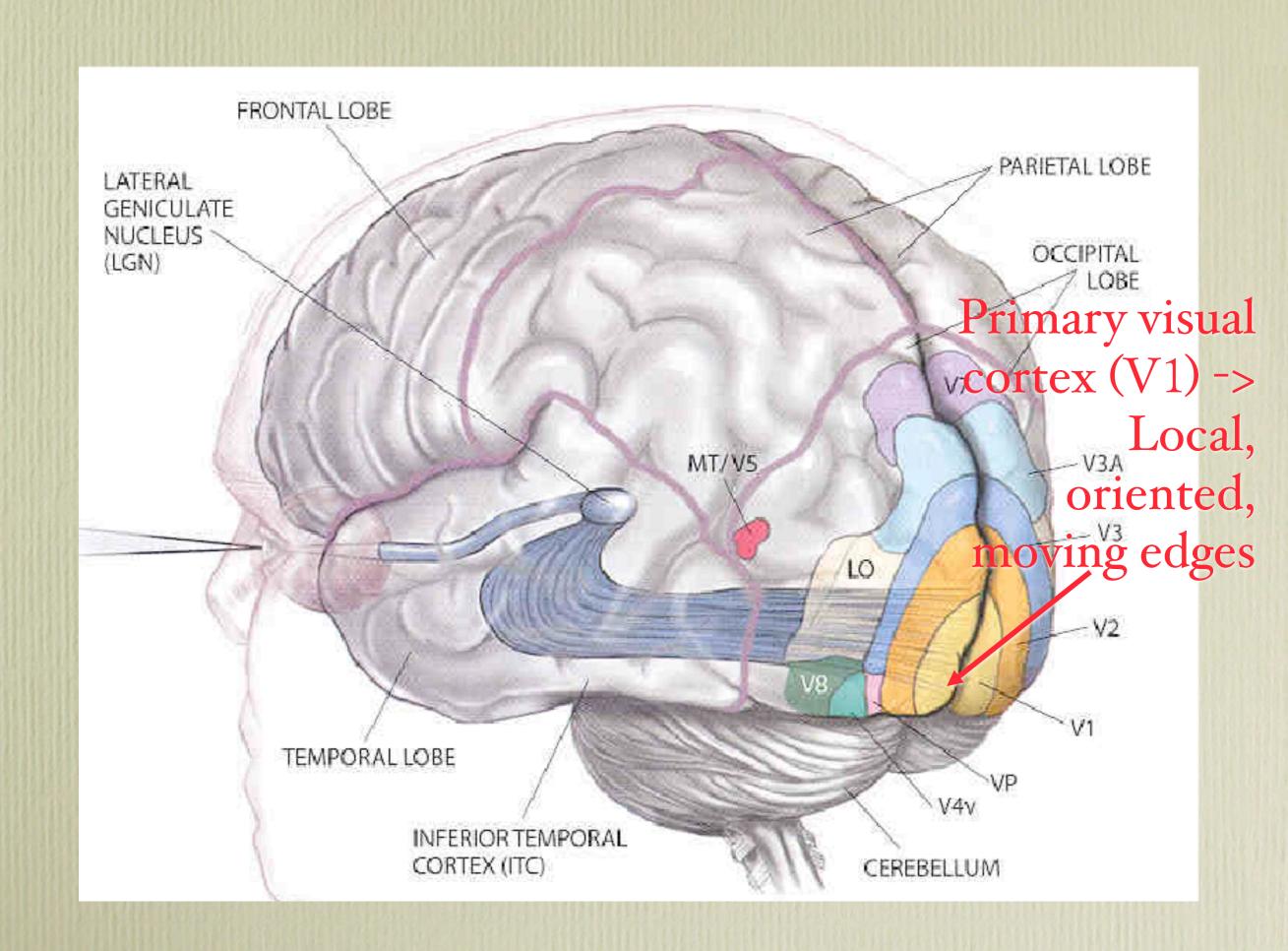
Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Image Parsing: Unifying Segmentation, Detection and Recognition. IJCV, 63(2).

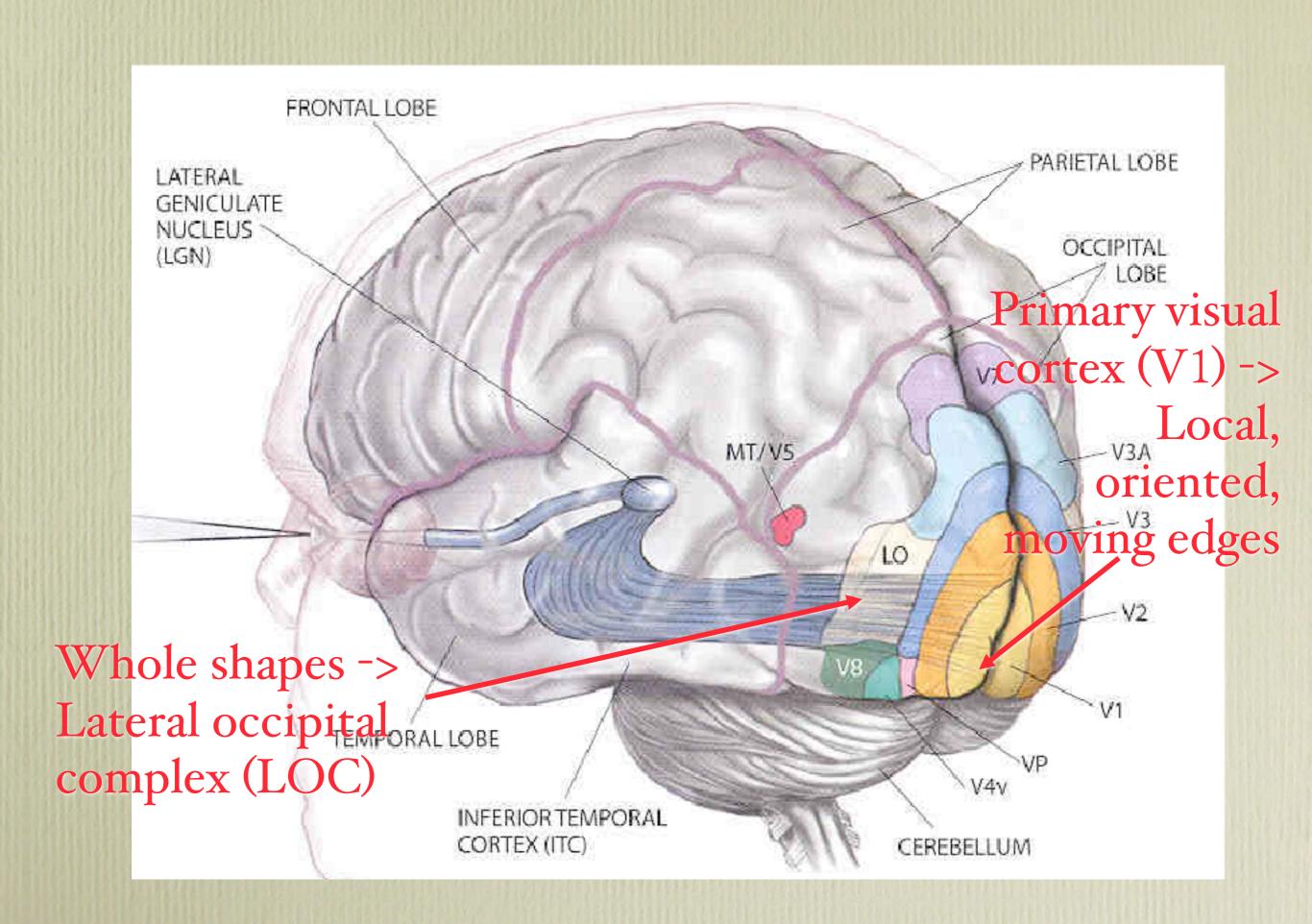


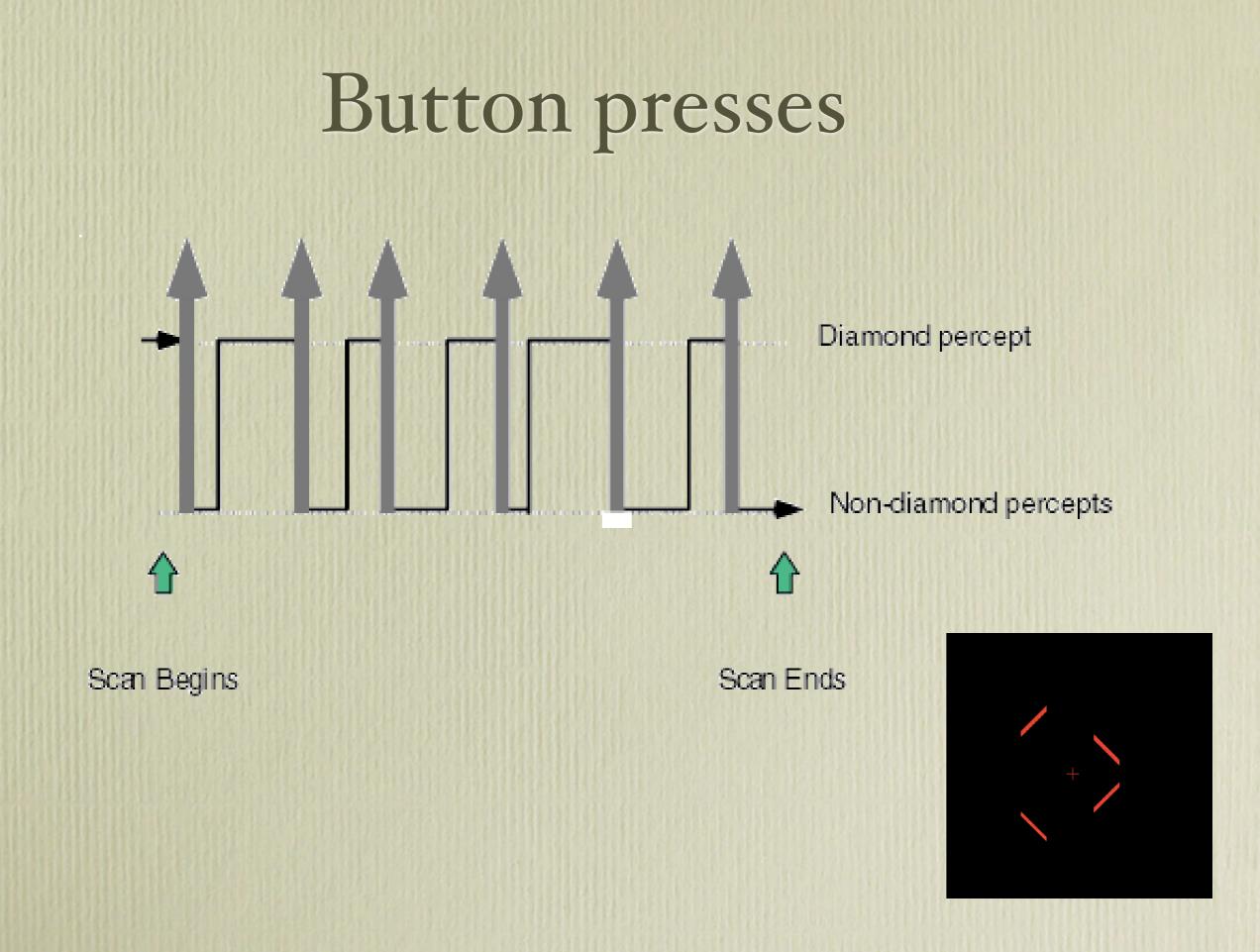
Bottom-up result

Synthesized image

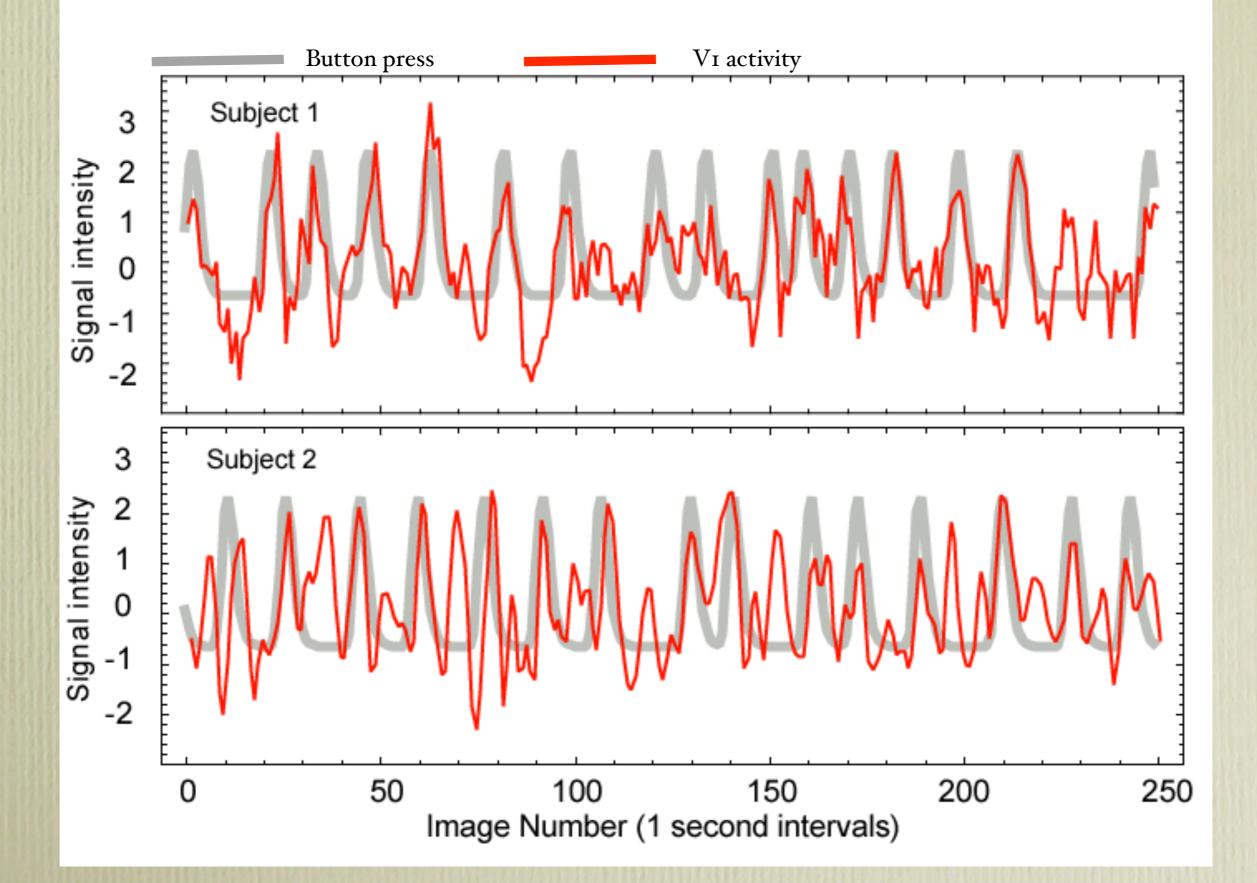




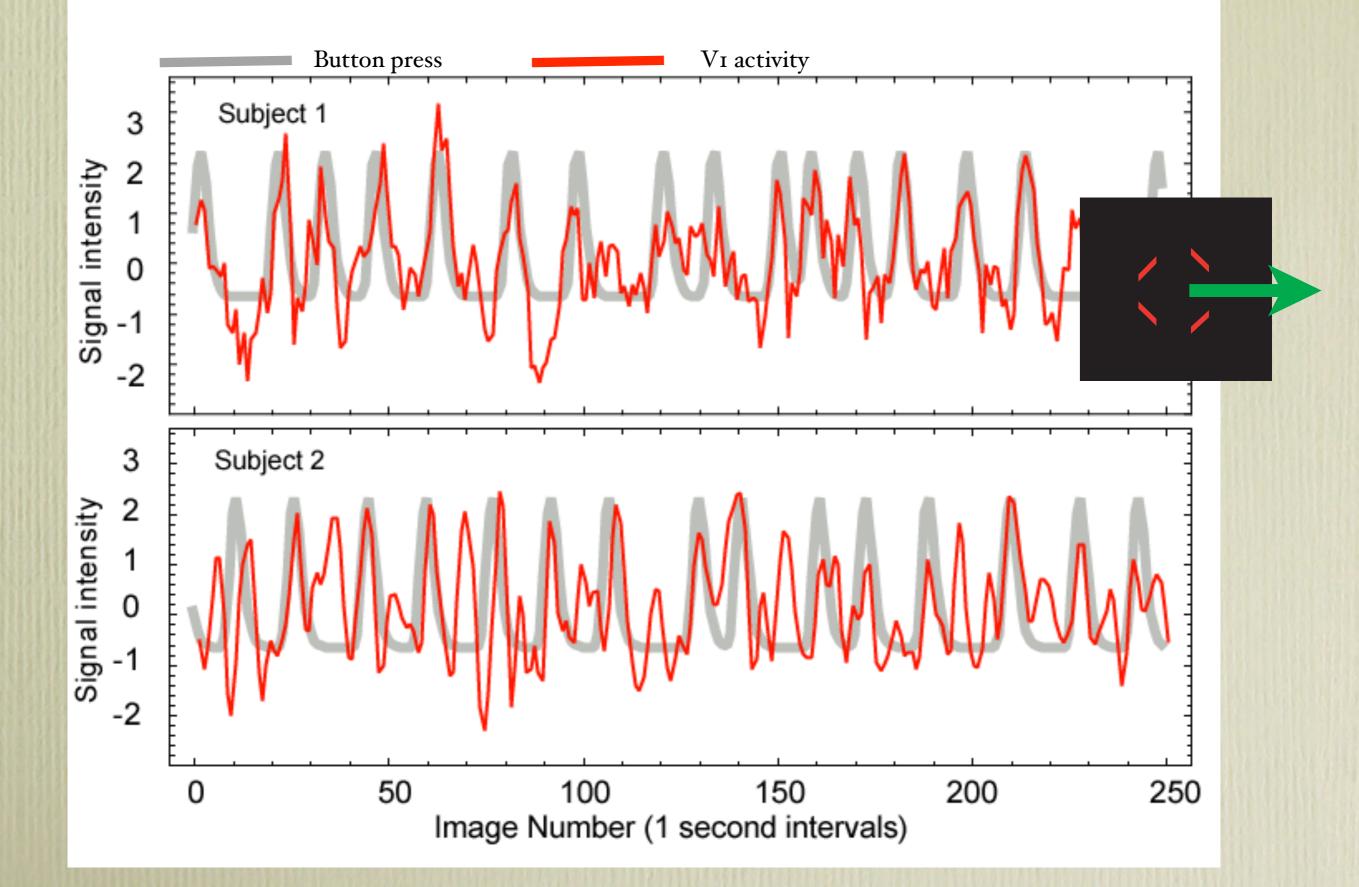


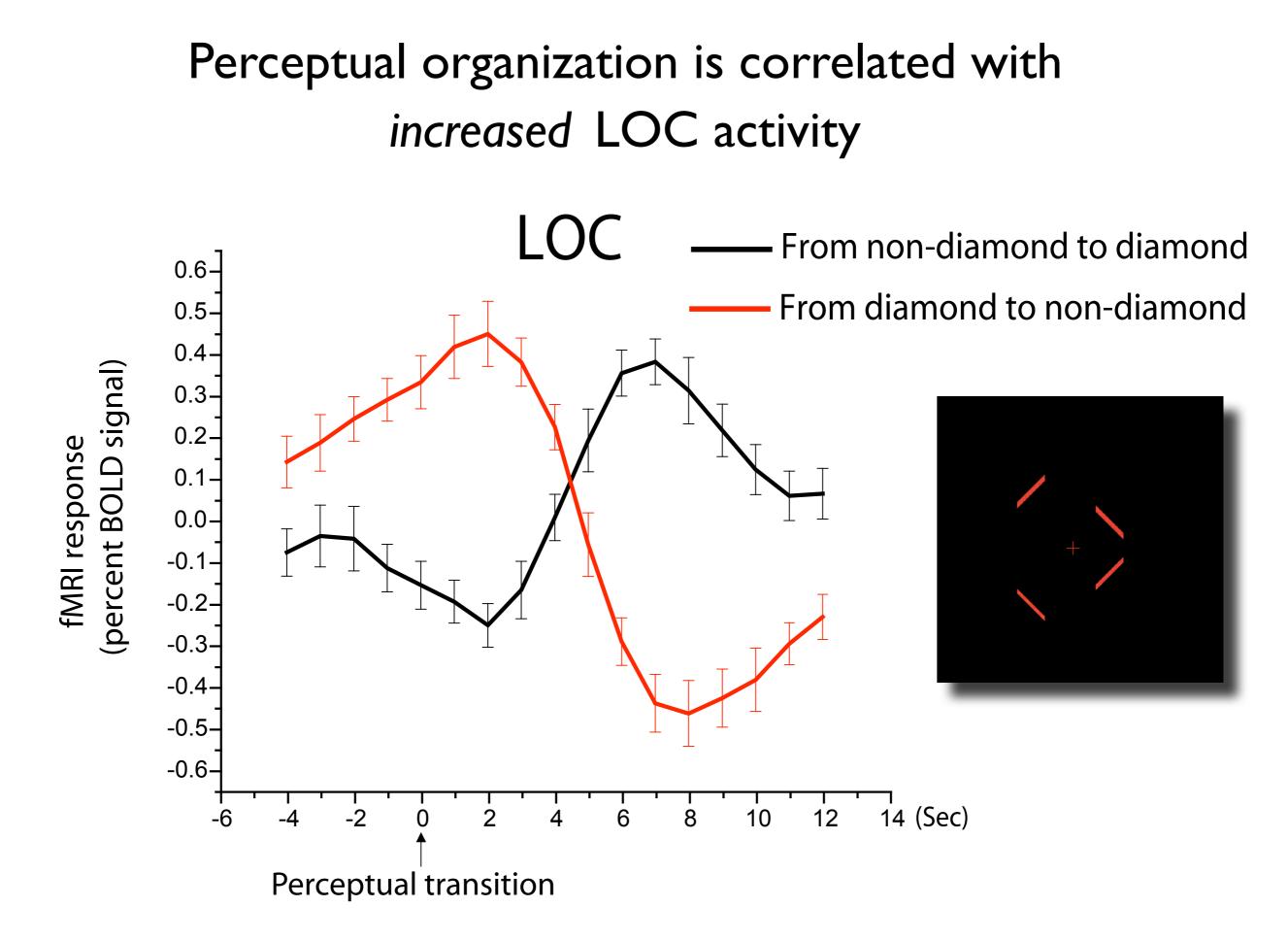


Perceptual organization correlates with reduced V1 activity

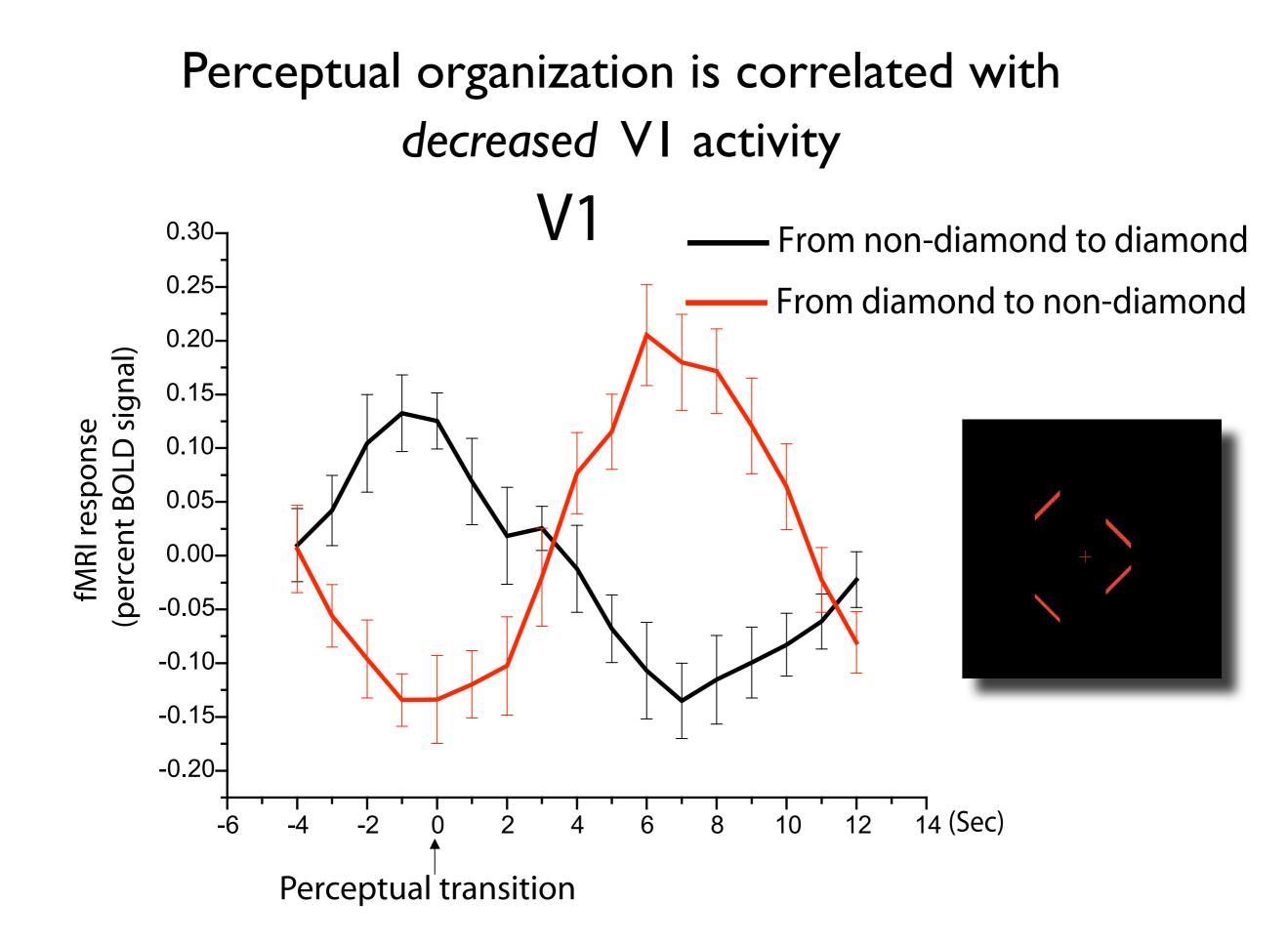


Perceptual organization correlates with reduced V1 activity

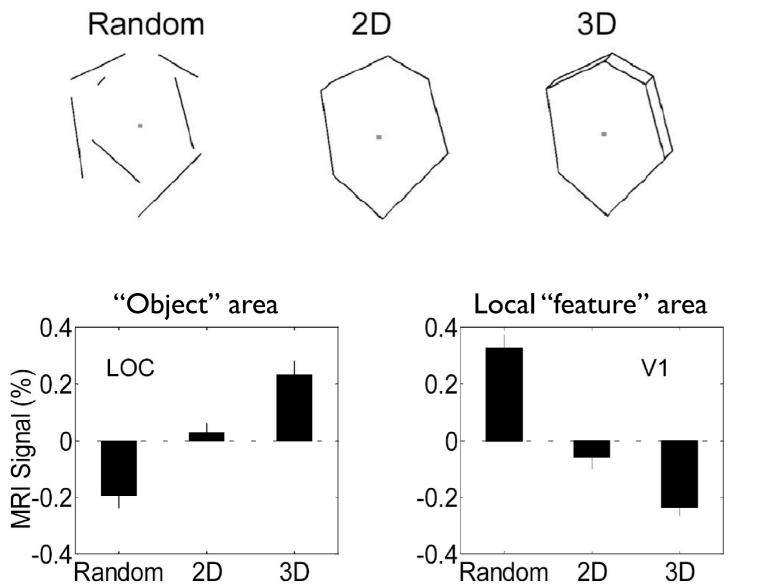




From: Fang, Murray, He & Kersten, 2004, International Congress of Psychology, Beijing

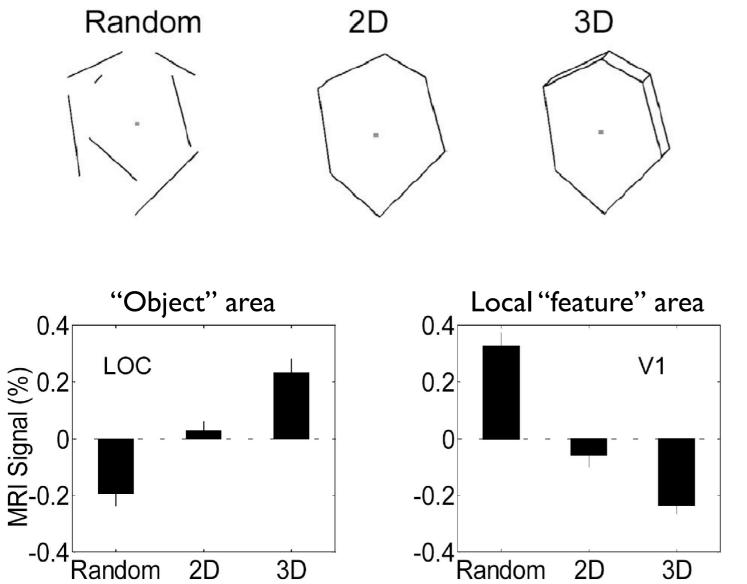


Shape perception can reduce VI activity



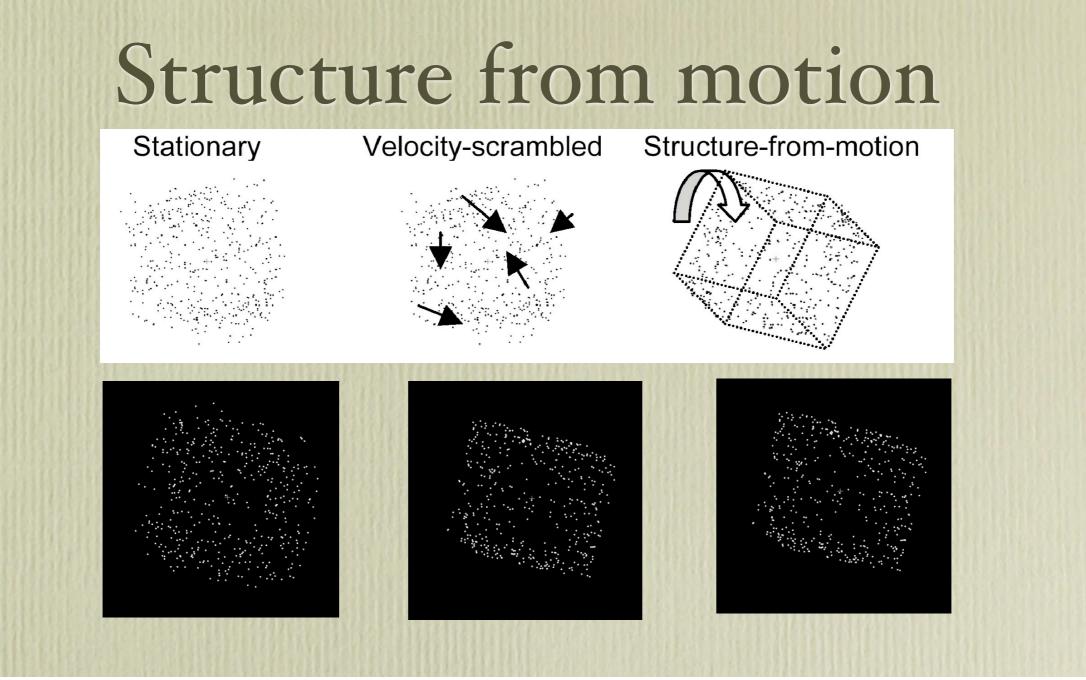
Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99, 15164-15169.

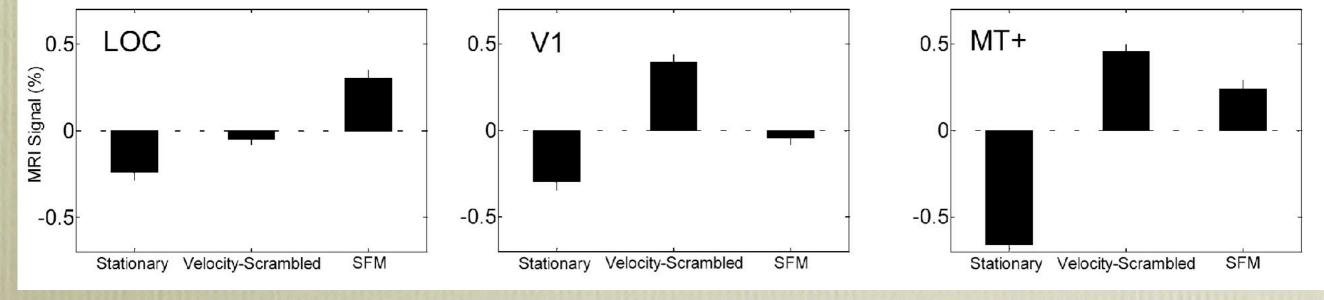
Shape perception can reduce VI activity

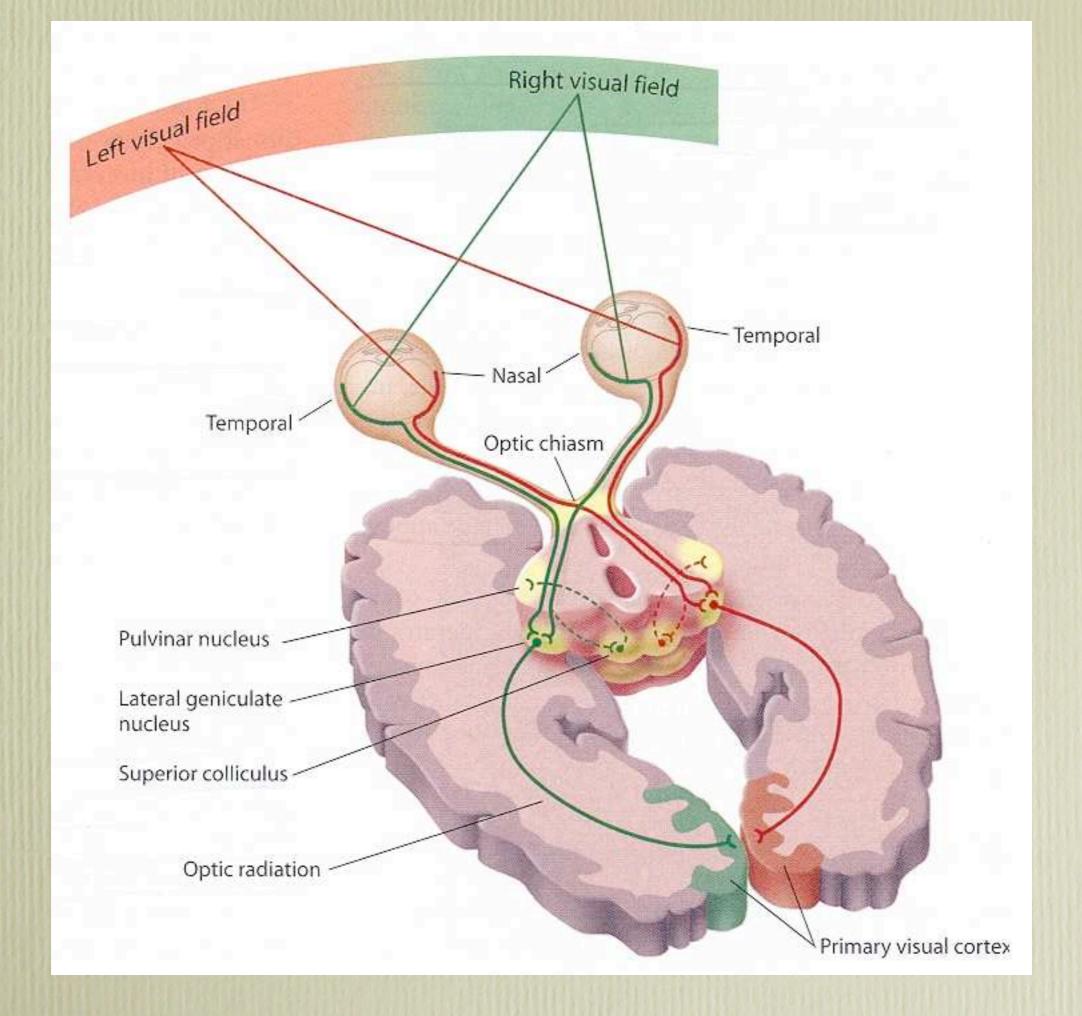


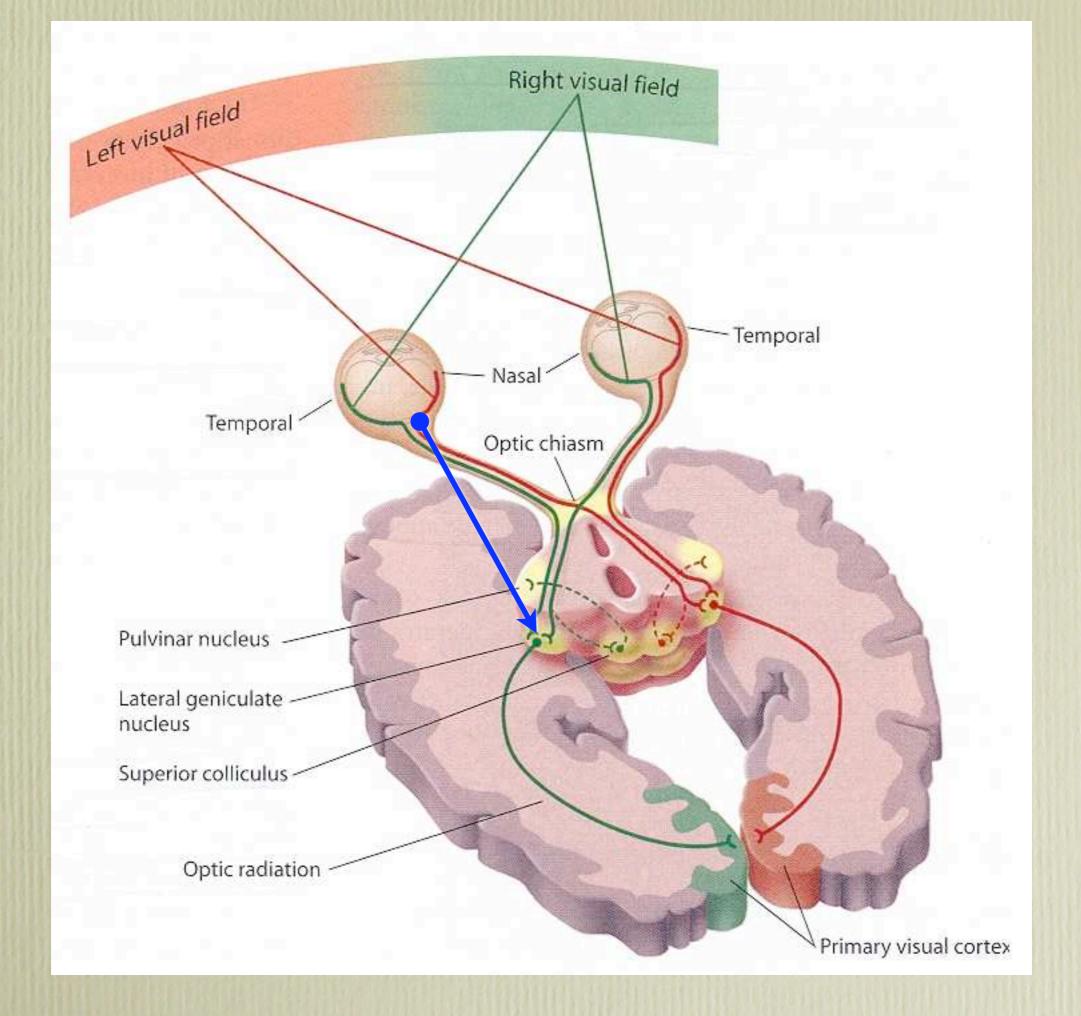
Explanation? Many... "Explaining away" through predictive coding Sparse coding

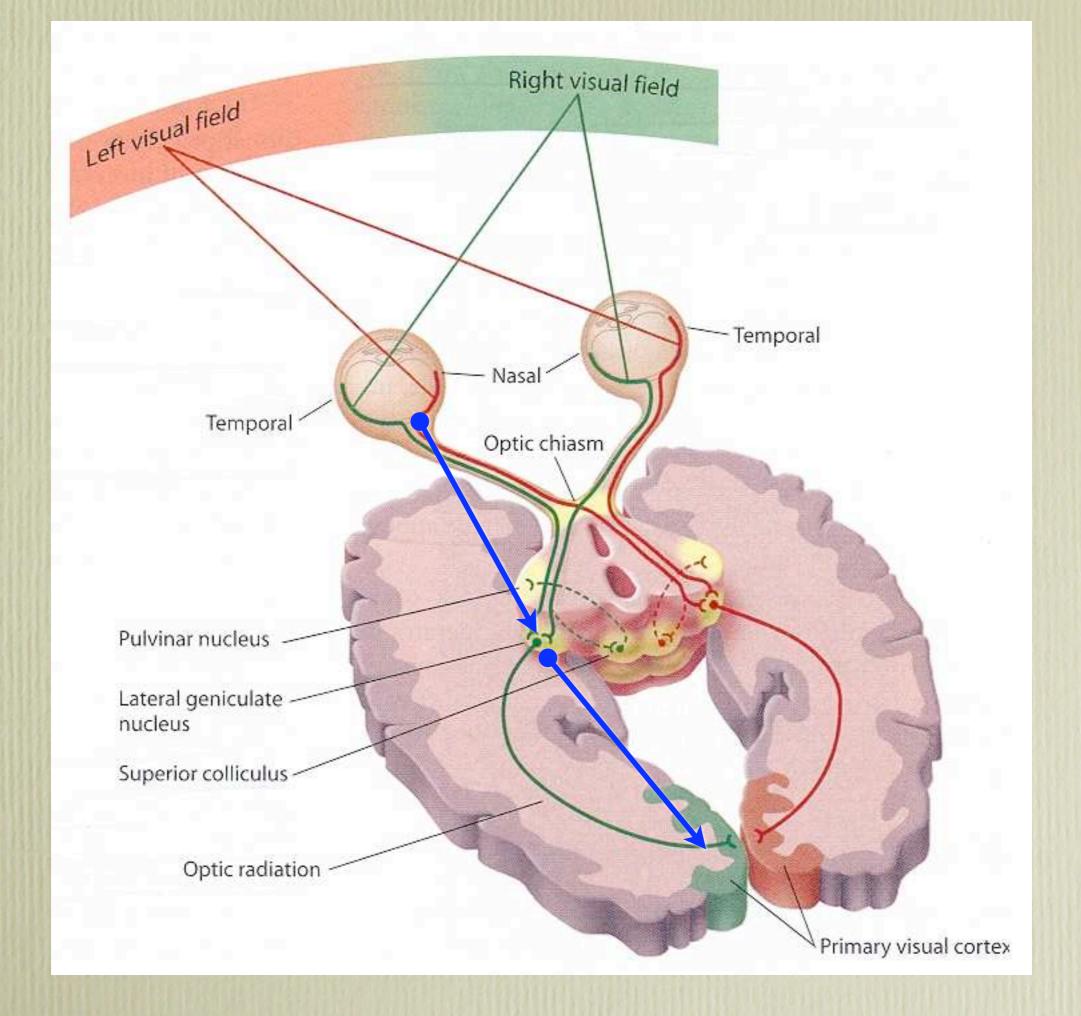
Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99, 15164-15169.

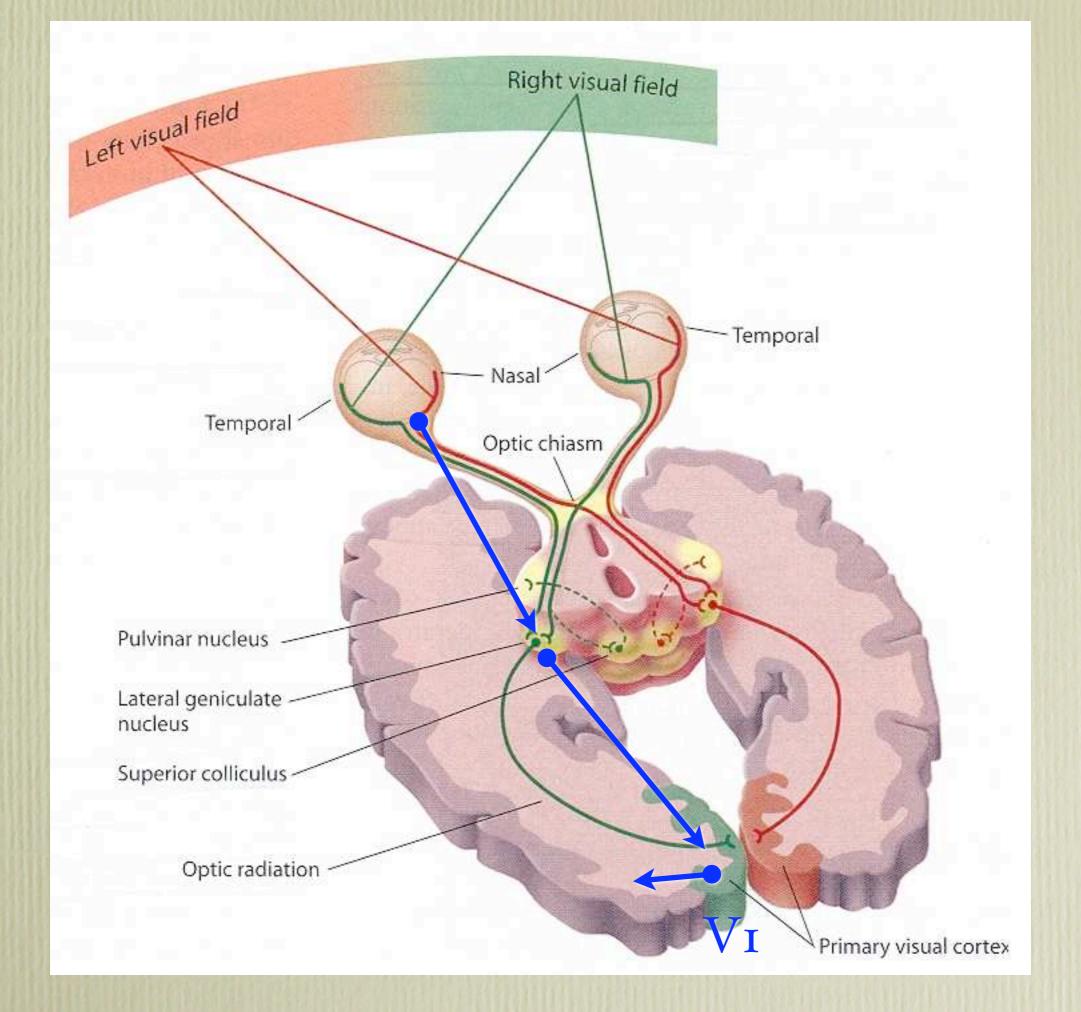


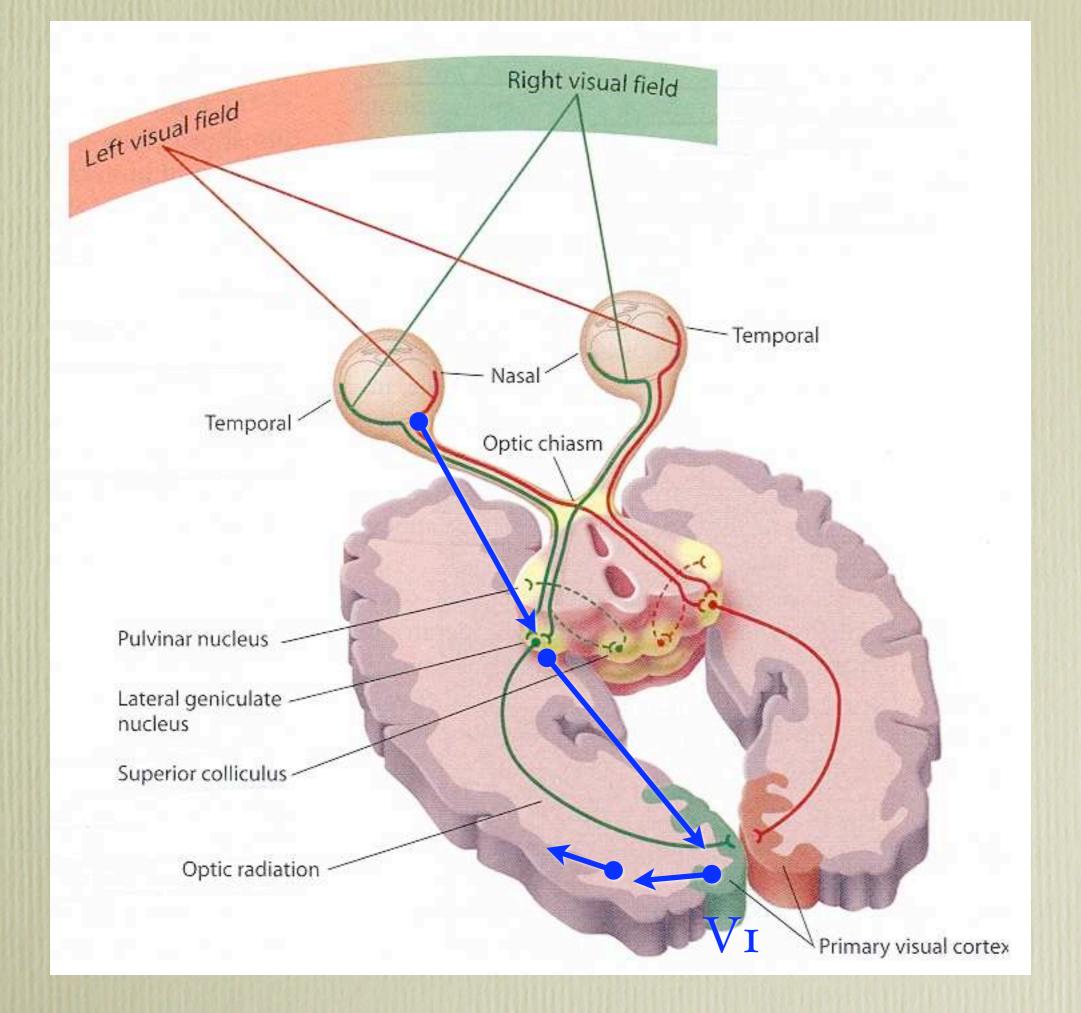


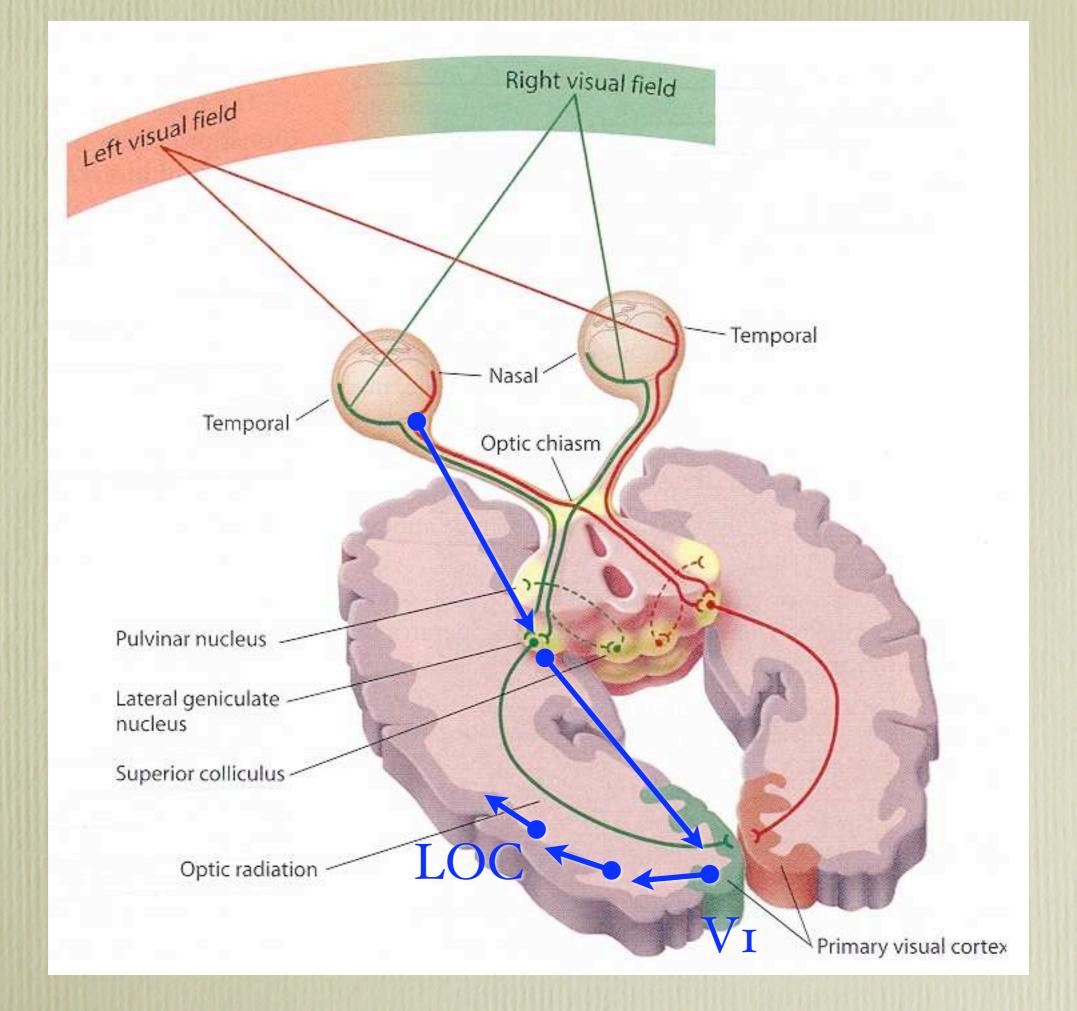


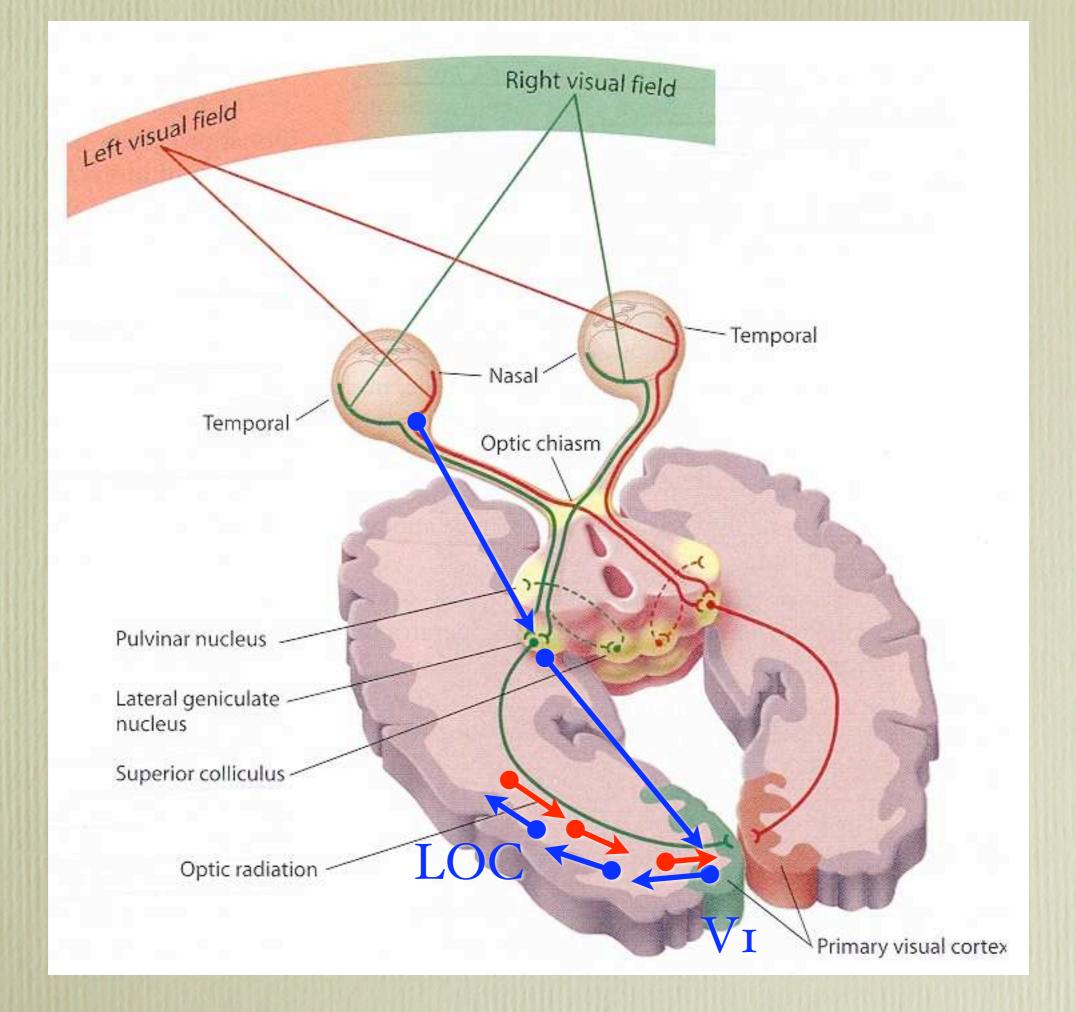












Cortical Mechanism? ...some speculation

2. Feedback models

2. Feedback models

a. Feedforward + attention:

Cortical Mechanism? ...some speculation 1. Feedforward: local features to objects 2. Feedback models

a. Feedforward + attention:

competitive selection of features

2. Feedback models

a. Feedforward + attention:

competitive selection of features

b. Predictive coding

2. Feedback models

a. Feedforward + attention:

competitive selection of features

b. Predictive coding

c. Sparsification

2. Feedback models

a. Feedforward + attention:

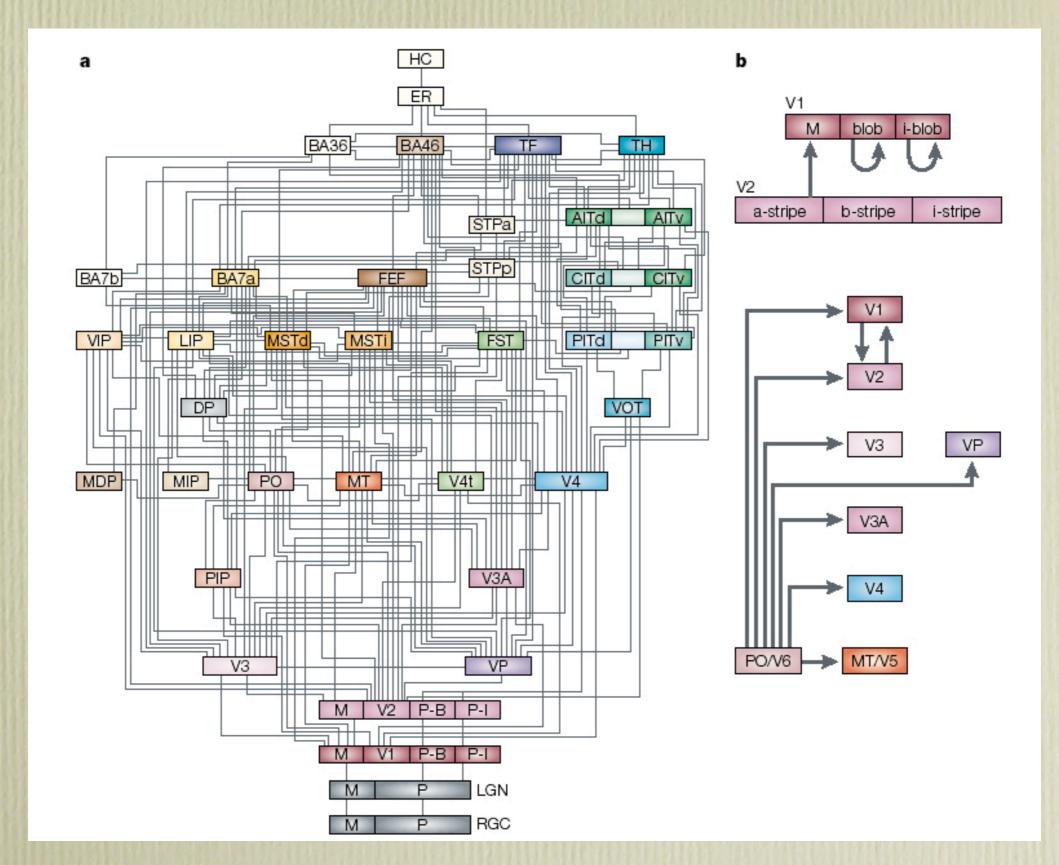
competitive selection of features

b. Predictive coding

c. Sparsification

Internal generative models

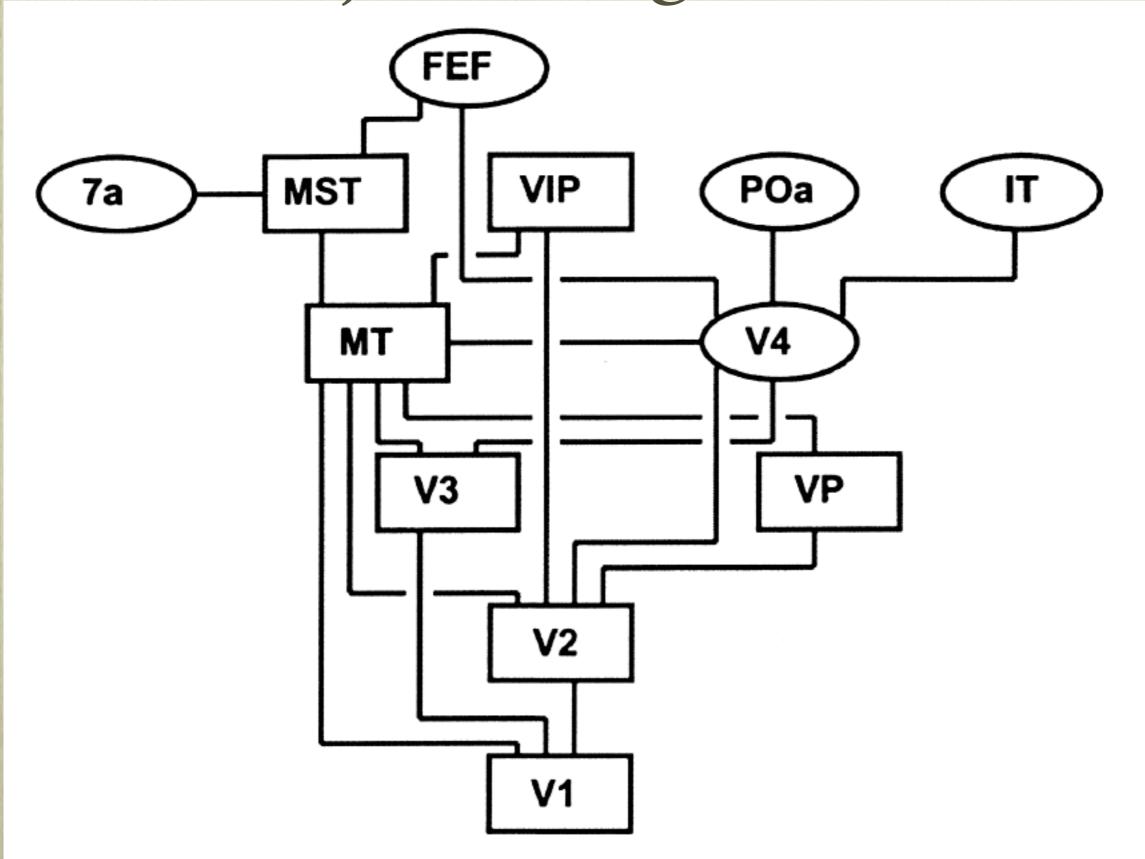
Cortical organization



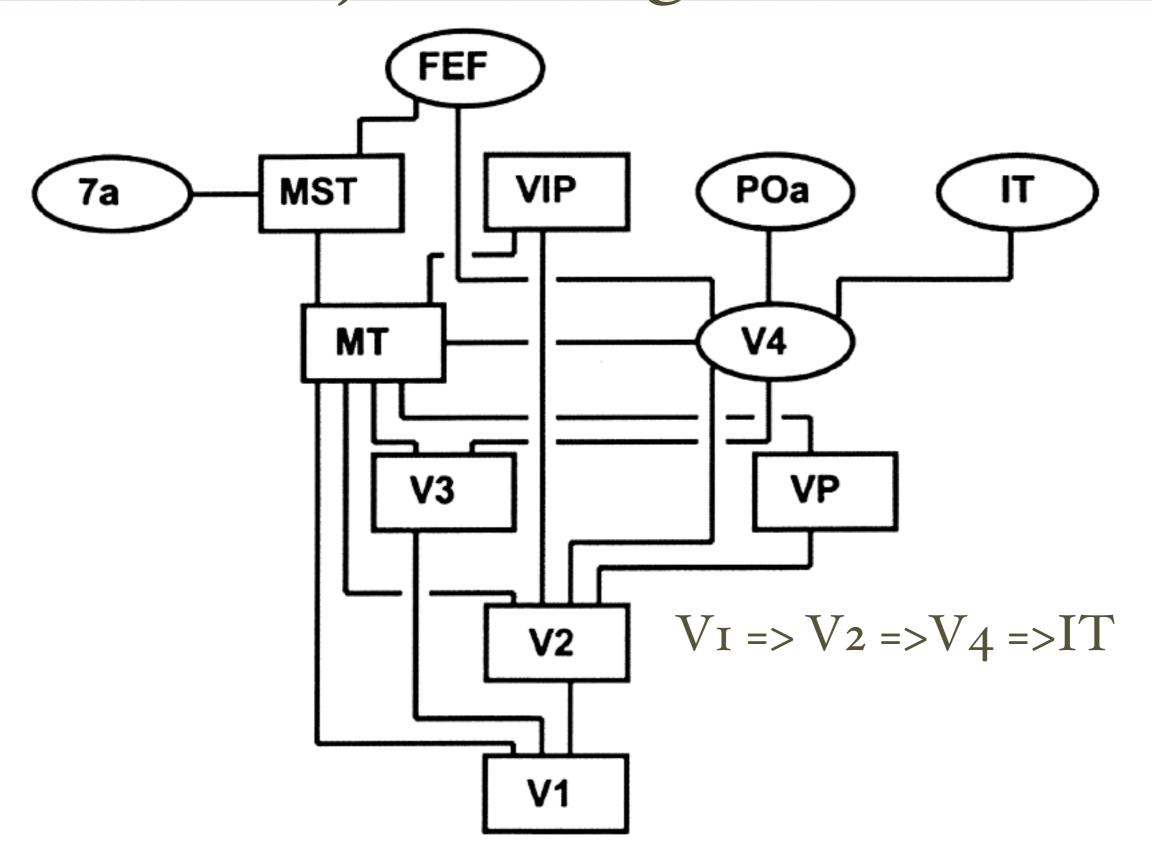
Cortical organization

- Organization of visual cortices is a hierarchy
- Depends on distinct feedforward/feedback pathways
- Different laminar specificity
- More backward connections
- Backward connections more diffuse

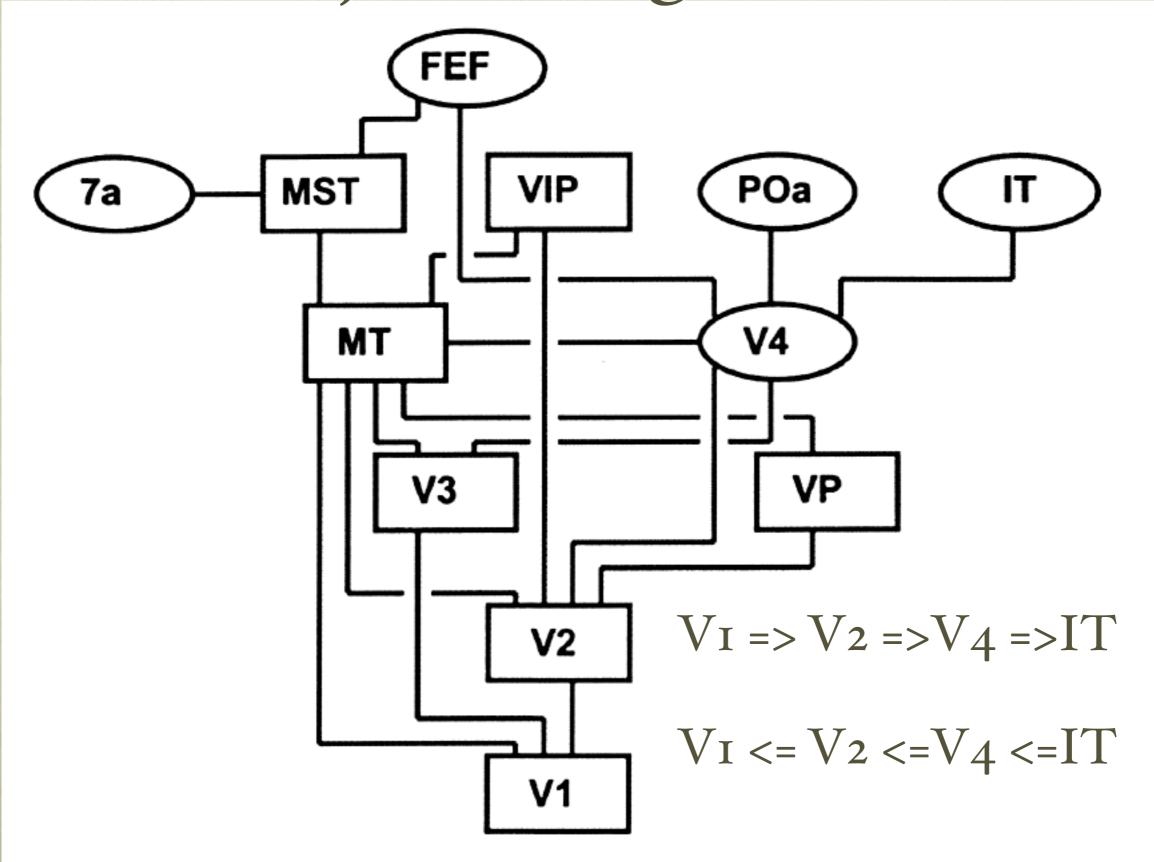
Object recognition?



Object recognition?



Object recognition?



Forward connections

- Sparse axonal bifurcations
- Topographically organized
- Originate in supragranular layers (I,II,III)
 - III => adjacent columns
 - II => other cortical areas
- Terminate in layer IV

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Feedback connections

- Lots of axonal bifurcation
- Diffuse topography
- Originate in infragranular (V, VI) layers
- Mainly terminate in supragranular layers (I,II,III)

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

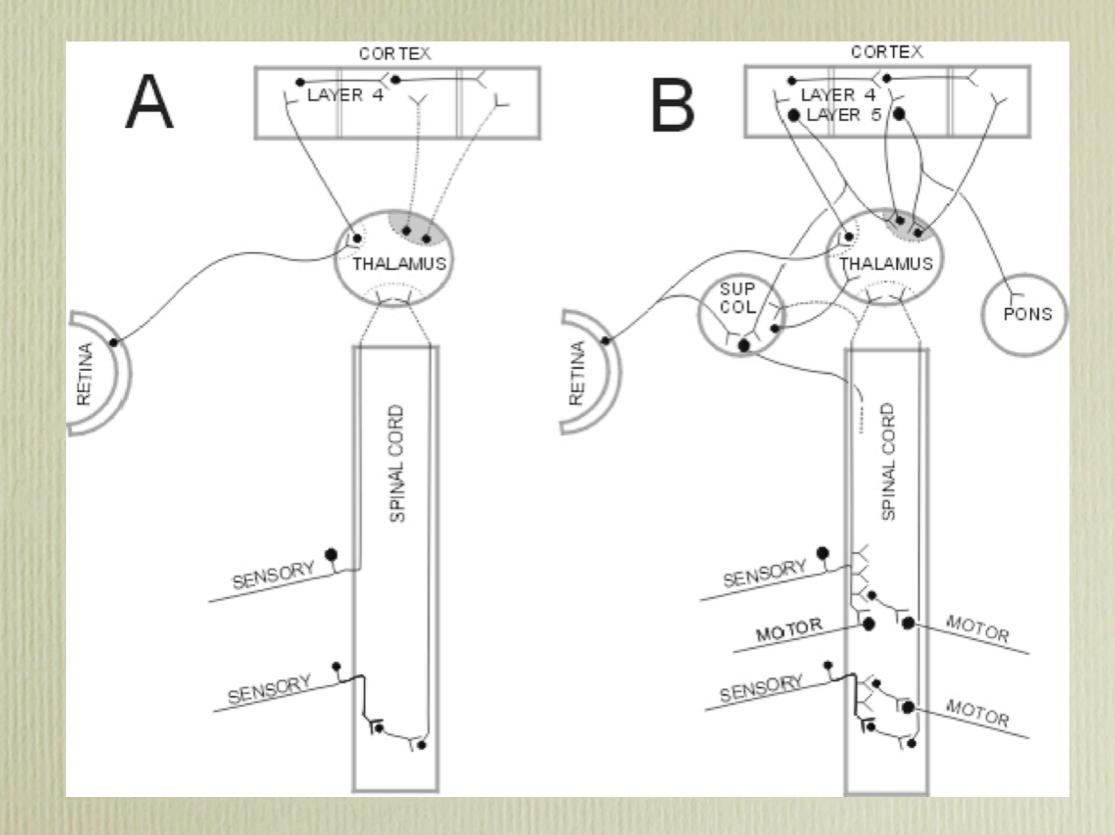


Figure courtesy of Ray Guillery

Predictive coding

• High-level object models project back predictions of the incoming data

Predictive coding

• High-level object models project back predictions of the incoming data

Poor fit, high residual => high activity

Predictive coding

• High-level object models project back predictions of the incoming data

Poor fit, high residual => high activity Sparsification

Predictive coding

• High-level object models project back predictions of the incoming data

Poor fit, high residual => high activity Sparsification

• A good high-level fit tells earlier areas to "stop gossiping"

Predictive coding

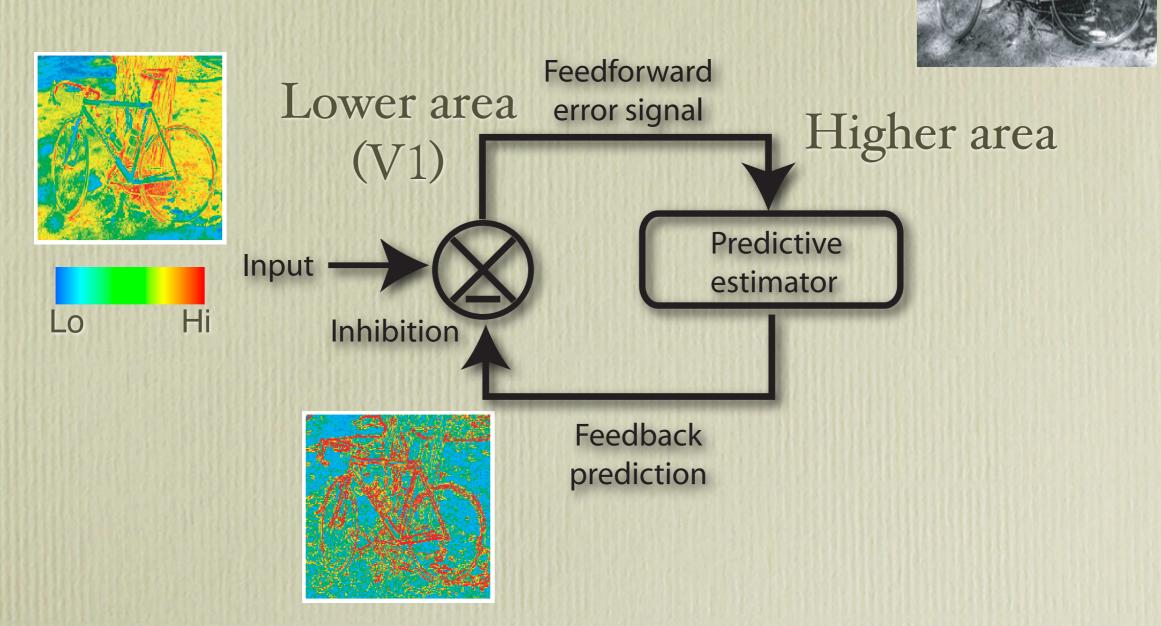
• High-level object models project back predictions of the incoming data

Poor fit, high residual => high activity Sparsification

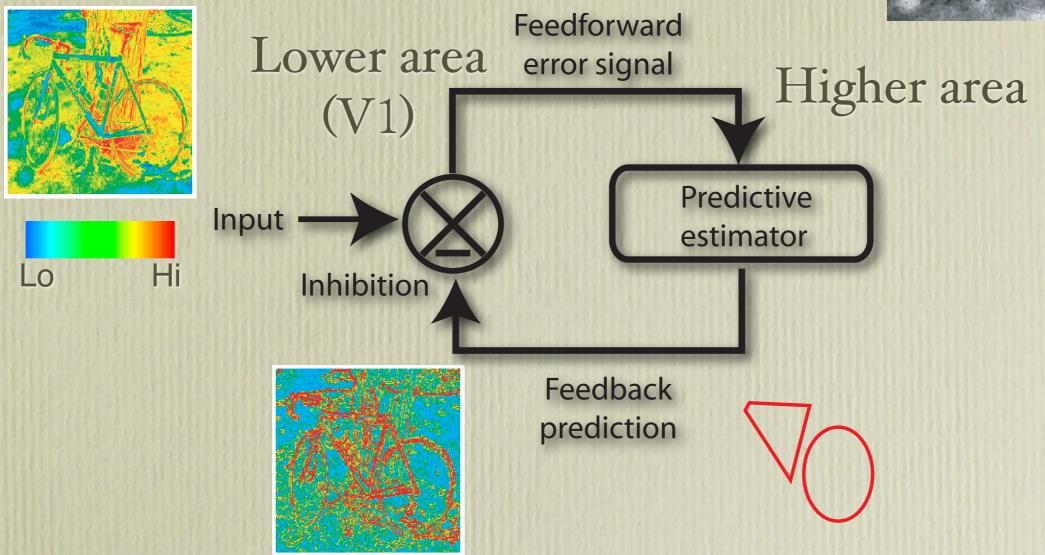
• A good high-level fit tells earlier areas to "stop gossiping"

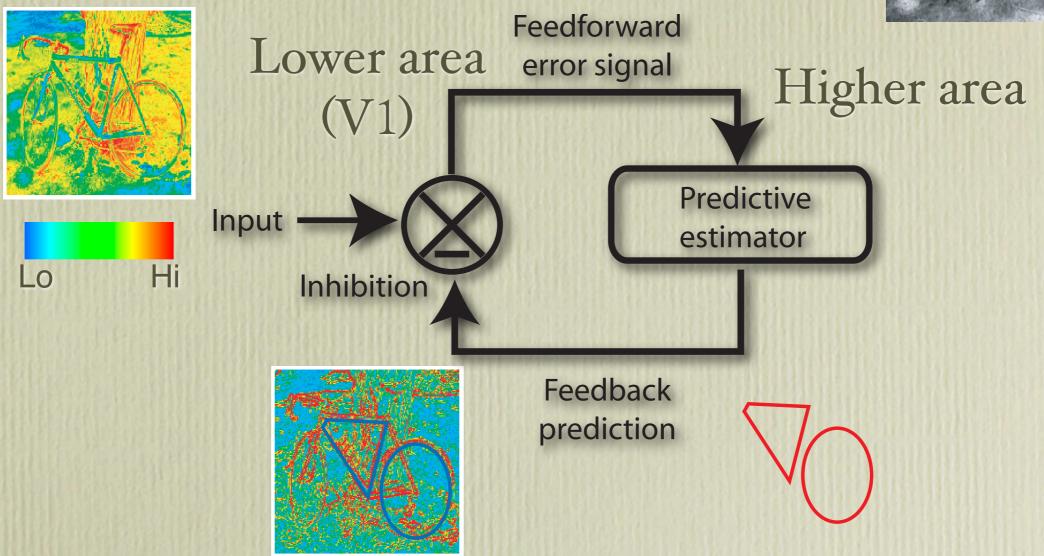
Amplify the activity for early features that belong to object, suppress the rest

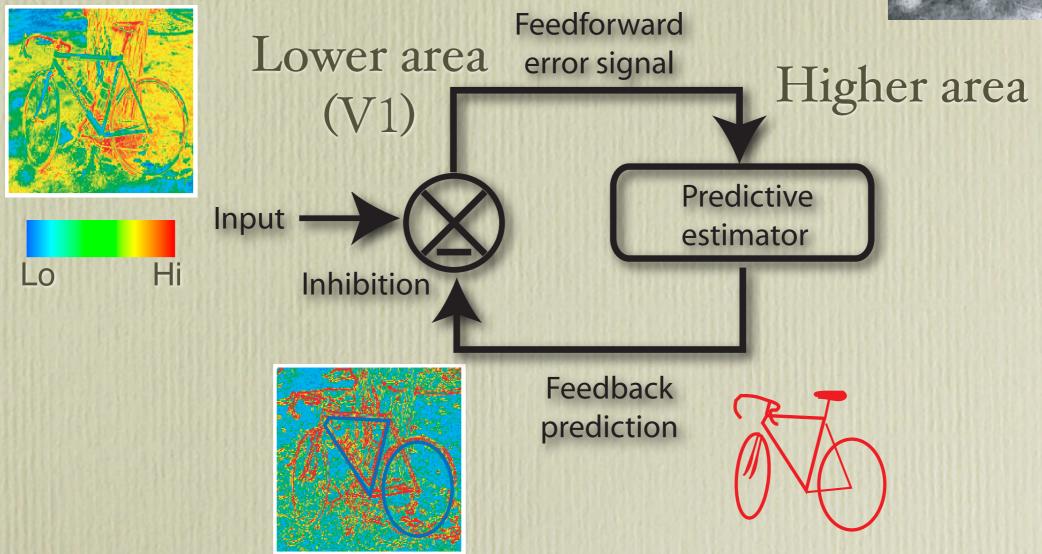
Predictive (top-down) processes in the brain?

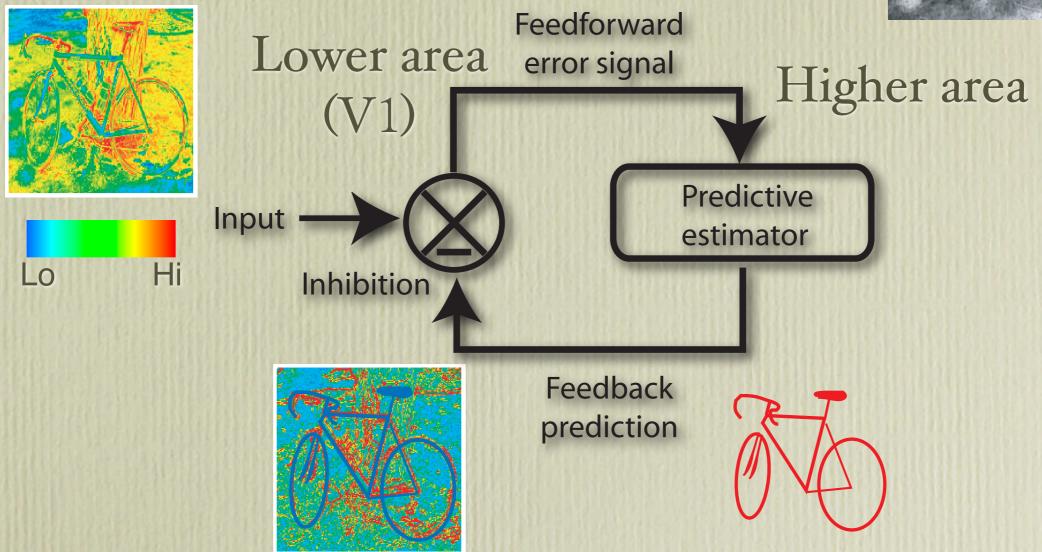


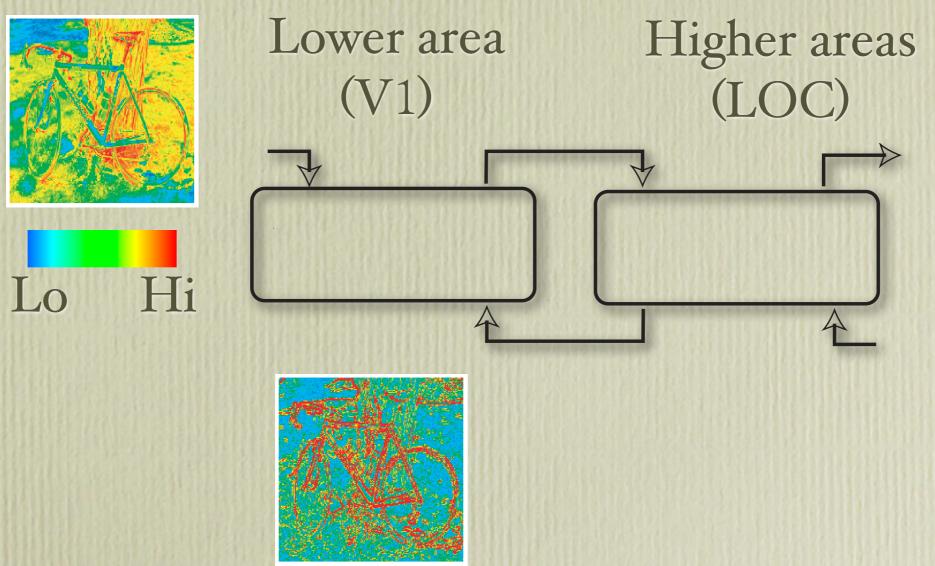
e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.



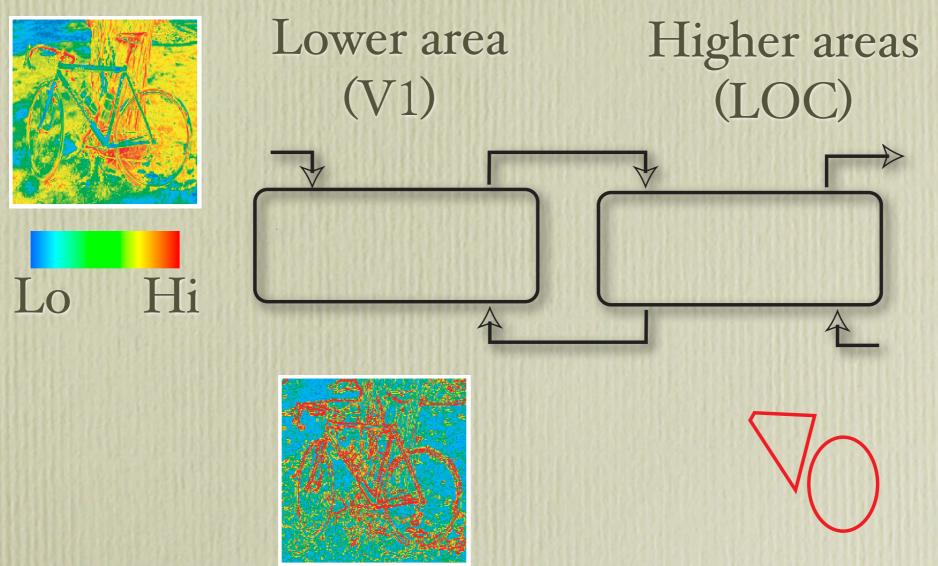




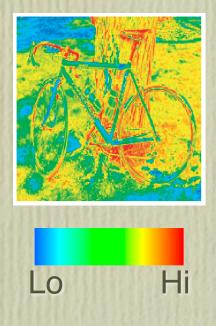


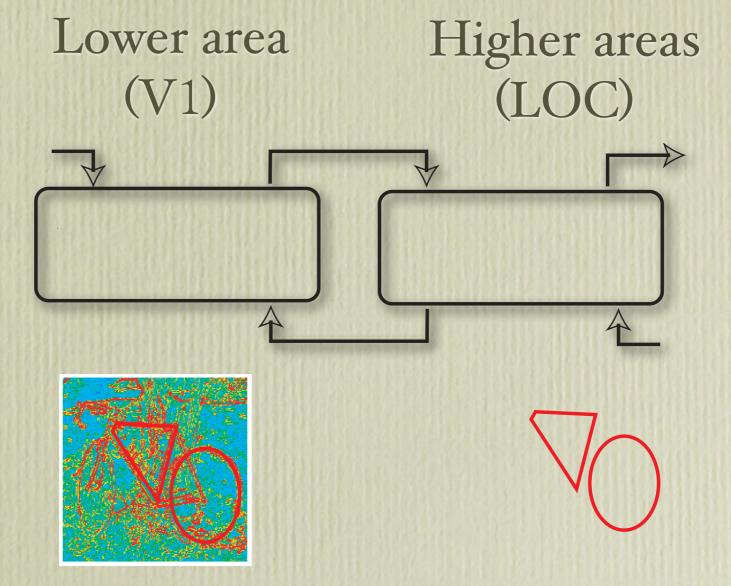


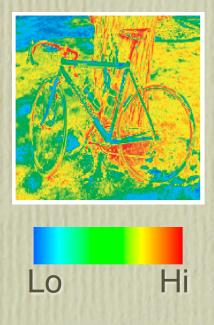
Grossberg S (1994) 3-D vision and figure-ground separation by visual cortex. Percept Psychophys 55:48-121.

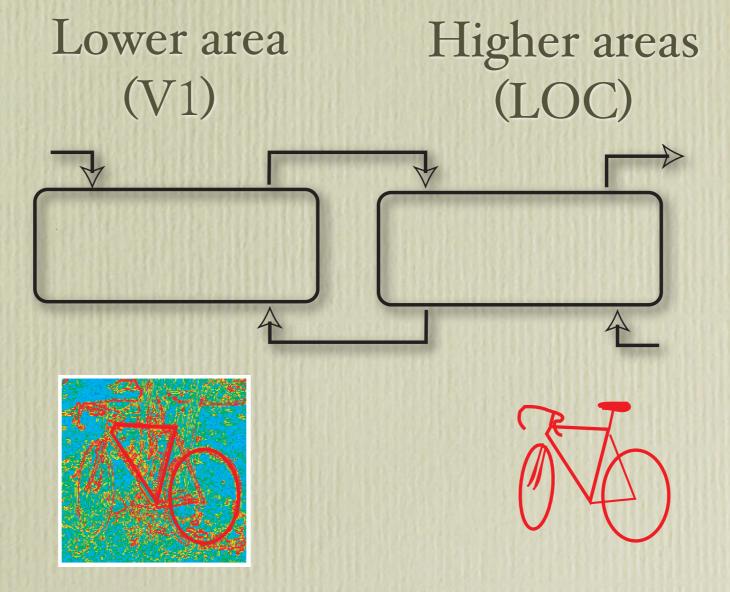


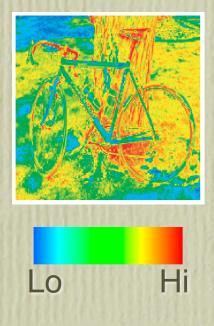
Grossberg S (1994) 3-D vision and figure-ground separation by visual cortex. Percept Psychophys 55:48-121.

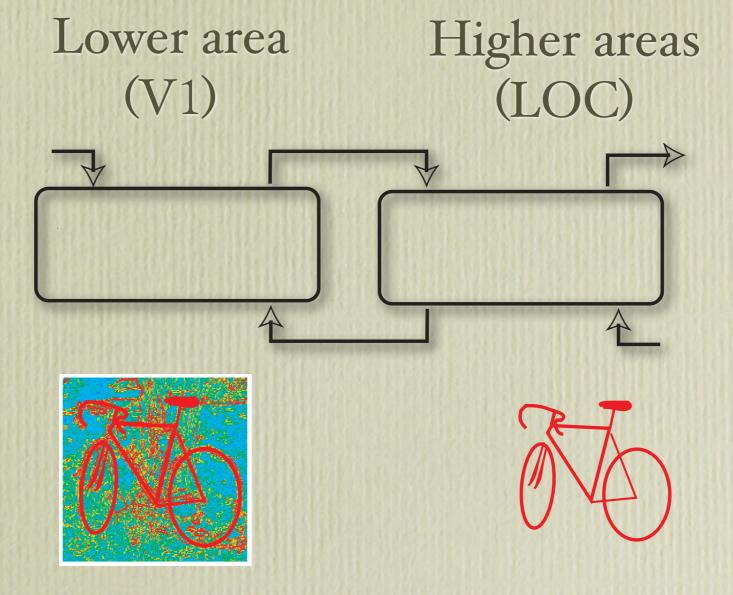


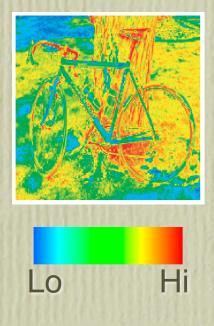


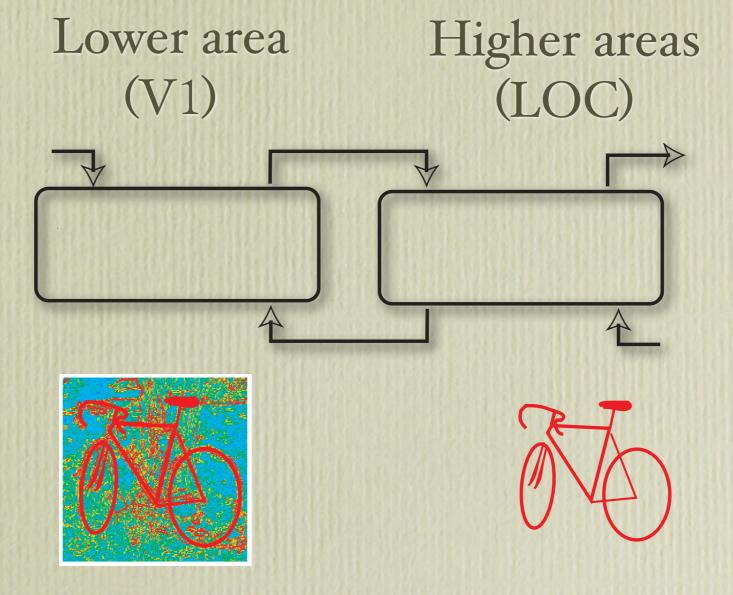


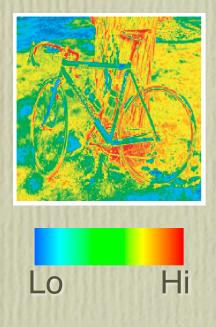


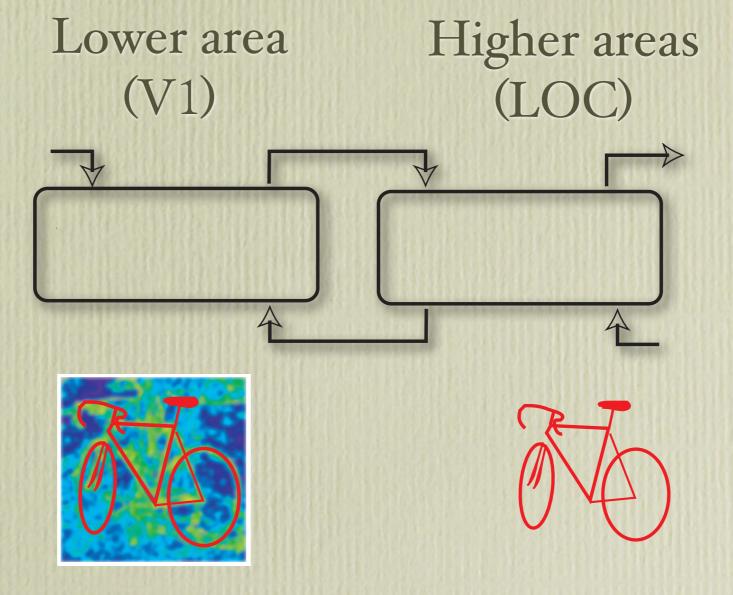




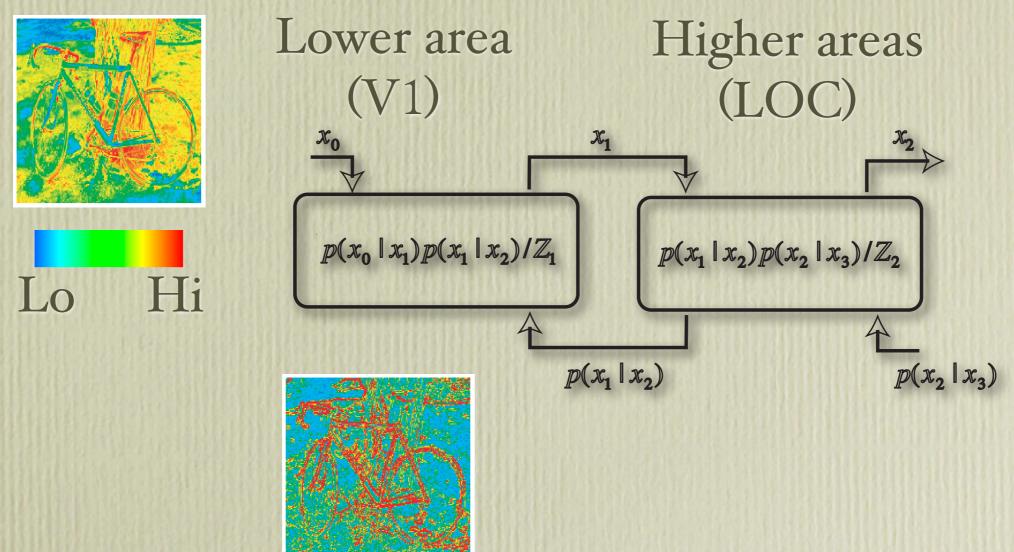








Bayesian Interpretation Sparsification



Lee & Mumford, 2003, JOSA

Particle filtering ideas: Isard M, Blake A (1998) Condensation -- conditional density propagation for visual tracking. International Journal of Computer Vision 29:5--28.

Summary

Common patterns of neocortex structure

• Has inspired lots of models of cortical information processing

Key target problem?

- Object perception given occlusion, clutter fMRI and object grouping given occlusion
 - consistent with feedback, but...